cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A066620 Number of unordered triples of distinct pairwise coprime divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 7, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 7, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 13, 0, 1, 2, 0, 1, 7, 0, 2, 1, 7, 0, 6, 0, 1, 2, 2, 1, 7, 0, 4, 0, 1, 0, 13, 1, 1, 1, 3, 0, 13, 1, 2, 1, 1, 1, 5, 0, 2, 2, 4, 0, 7, 0
Offset: 1

Views

Author

K. B. Subramaniam (kb_subramaniambalu(AT)yahoo.com) and Amarnath Murthy, Dec 24 2001

Keywords

Comments

a(m) = a(n) if m and n have same factorization structure.

Examples

			a(24) = 3: the divisors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24. The triples are (1, 2, 3), (1, 2, 9), (1, 3, 4).
a(30) = 7: the triples are (1, 2, 3), (1, 2, 5), (1, 3, 5), (2, 3, 5), (1, 3, 10), (1, 5, 6), (1, 2, 15).
		

References

  • Amarnath Murthy, Decomposition of the divisors of a natural number into pairwise coprime sets, Smarandache Notions Journal, vol. 12, No. 1-2-3, Spring 2001.pp 303-306.

Crossrefs

Positions of zeros are A000961.
Positions of ones are A006881.
The version for subsets of {1..n} instead of divisors is A015617.
The non-strict ordered version is A048785.
The version for pairs of divisors is A063647.
The non-strict version (3-multisets) is A100565.
The version for partitions is A220377 (non-strict: A307719).
A version for sets of divisors of any size is A225520.
A000005 counts divisors.
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
A007304 ranks 3-part strict partitions.
A014311 ranks 3-part compositions.
A014612 ranks 3-part partitions.
A018892 counts unordered pairs of coprime divisors (ordered: A048691).
A051026 counts pairwise indivisible subsets of {1..n}.
A337461 counts 3-part pairwise coprime compositions.
A338331 lists Heinz numbers of pairwise coprime partitions.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Divisors[n],{3}],CoprimeQ@@#&]],{n,100}] (* Gus Wiseman, Apr 28 2021 *)
  • PARI
    A066620(n) = (numdiv(n^3)-3*numdiv(n)+2)/6; \\ After Jovovic's formula. - Antti Karttunen, May 27 2017
    
  • Python
    from sympy import divisor_count as d
    def a(n): return (d(n**3) - 3*d(n) + 2)/6 # Indranil Ghosh, May 27 2017

Formula

In the reference it is shown that if k is a squarefree number with r prime factors and m with (r+1) prime factors then a(m) = 4*a(k) + 2^k - 1.
a(n) = (tau(n^3)-3*tau(n)+2)/6. - Vladeta Jovovic, Nov 27 2004

Extensions

More terms from Vladeta Jovovic, Apr 03 2003
Name corrected by Andrey Zabolotskiy, Dec 09 2020
Name corrected by Gus Wiseman, Apr 28 2021 (ordered version is 6*a(n))

A338556 Products of three prime numbers of even index.

Original entry on oeis.org

27, 63, 117, 147, 171, 261, 273, 333, 343, 387, 399, 477, 507, 549, 609, 637, 639, 711, 741, 777, 801, 903, 909, 931, 963, 1017, 1083, 1113, 1131, 1179, 1183, 1251, 1281, 1359, 1421, 1443, 1467, 1491, 1557, 1629, 1653, 1659, 1677, 1729, 1737, 1791, 1813, 1869
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2020

Keywords

Comments

All terms are odd.
Also Heinz numbers of integer partitions with 3 parts, all of which are even. These partitions are counted by A001399.

Examples

			The sequence of terms together with their prime indices begins:
      27: {2,2,2}      637: {4,4,6}     1183: {4,6,6}
      63: {2,2,4}      639: {2,2,20}    1251: {2,2,34}
     117: {2,2,6}      711: {2,2,22}    1281: {2,4,18}
     147: {2,4,4}      741: {2,6,8}     1359: {2,2,36}
     171: {2,2,8}      777: {2,4,12}    1421: {4,4,10}
     261: {2,2,10}     801: {2,2,24}    1443: {2,6,12}
     273: {2,4,6}      903: {2,4,14}    1467: {2,2,38}
     333: {2,2,12}     909: {2,2,26}    1491: {2,4,20}
     343: {4,4,4}      931: {4,4,8}     1557: {2,2,40}
     387: {2,2,14}     963: {2,2,28}    1629: {2,2,42}
     399: {2,4,8}     1017: {2,2,30}    1653: {2,8,10}
     477: {2,2,16}    1083: {2,8,8}     1659: {2,4,22}
     507: {2,6,6}     1113: {2,4,16}    1677: {2,6,14}
     549: {2,2,18}    1131: {2,6,10}    1729: {4,6,8}
     609: {2,4,10}    1179: {2,2,32}    1737: {2,2,44}
		

Crossrefs

A014612 allows all prime indices (not just even) (strict: A007304).
A066207 allows products of any length (strict: A258117).
A338471 is the version for odds instead of evens (strict: A307534).
A338557 is the strict case.
A014311 is a ranking of ordered triples (strict: A337453).
A001399(n-3) counts 3-part partitions (strict: A001399(n-6)).
A005117 lists squarefree numbers, with even case A039956.
A008284 counts partitions by sum and length (strict: A008289).
A023023 counts 3-part relatively prime partitions (strict: A101271).
A046316 lists products of exactly three odd primes (strict: A046389).
A066208 lists numbers with all odd prime indices (strict: A258116).
A075818 lists even Heinz numbers of 3-part partitions (strict: A075819).
A307719 counts 3-part pairwise coprime partitions (strict: A220377).
A285508 lists Heinz numbers of non-strict triples.
Subsequence of A332820.

Programs

  • Mathematica
    Select[Range[1000],PrimeOmega[#]==3&&OddQ[Times@@(1+PrimePi/@First/@FactorInteger[#])]&]
  • PARI
    isok(m) = my(f=factor(m)); (bigomega(f)==3) && (#select(x->(x%2), apply(primepi, f[,1]~)) == 0); \\ Michel Marcus, Nov 10 2020
    
  • Python
    from itertools import filterfalse
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A338556(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum((primepi(x//(k*m))>>1)-(b>>1)+1 for a,k in filterfalse(lambda x:x[0]&1,enumerate(primerange(3,integer_nthroot(x,3)[0]+1),2)) for b,m in filterfalse(lambda x:x[0]&1,enumerate(primerange(k,isqrt(x//k)+1),a))))
        return bisection(f,n,n) # Chai Wah Wu, Oct 18 2024

A338471 Products of three prime numbers of odd index.

Original entry on oeis.org

8, 20, 44, 50, 68, 92, 110, 124, 125, 164, 170, 188, 230, 236, 242, 268, 275, 292, 310, 332, 374, 388, 410, 412, 425, 436, 470, 506, 508, 548, 575, 578, 590, 596, 605, 628, 668, 670, 682, 716, 730, 764, 775, 782, 788, 830, 844, 902, 908, 932, 935, 964, 970
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2020

Keywords

Comments

Also Heinz numbers of integer partitions with 3 parts, all of which are odd. These partitions are counted by A001399.

Examples

			The sequence of terms together with their prime indices begins:
       8: {1,1,1}      268: {1,1,19}     575: {3,3,9}
      20: {1,1,3}      275: {3,3,5}      578: {1,7,7}
      44: {1,1,5}      292: {1,1,21}     590: {1,3,17}
      50: {1,3,3}      310: {1,3,11}     596: {1,1,35}
      68: {1,1,7}      332: {1,1,23}     605: {3,5,5}
      92: {1,1,9}      374: {1,5,7}      628: {1,1,37}
     110: {1,3,5}      388: {1,1,25}     668: {1,1,39}
     124: {1,1,11}     410: {1,3,13}     670: {1,3,19}
     125: {3,3,3}      412: {1,1,27}     682: {1,5,11}
     164: {1,1,13}     425: {3,3,7}      716: {1,1,41}
     170: {1,3,7}      436: {1,1,29}     730: {1,3,21}
     188: {1,1,15}     470: {1,3,15}     764: {1,1,43}
     230: {1,3,9}      506: {1,5,9}      775: {3,3,11}
     236: {1,1,17}     508: {1,1,31}     782: {1,7,9}
     242: {1,5,5}      548: {1,1,33}     788: {1,1,45}
		

Crossrefs

A066208 allows products of any length (strict: A258116).
A307534 is the squarefree case.
A338469 is the restriction to odds.
A338556 is the version for evens (strict: A338557).
A000009 counts partitions into odd parts (strict: A000700).
A001399(n-3) counts 3-part partitions (strict: A001399(n-6)).
A008284 counts partitions by sum and length.
A014311 is a ranking of ordered triples (strict: A337453).
A014612 lists Heinz numbers of all triples (strict: A007304).
A023023 counts 3-part relatively prime partitions (strict: A101271).
A023023 counts 3-part relatively prime partitions (strict: A078374).
A046316 lists products of exactly three odd primes (strict: A046389).
A066207 lists numbers with all even prime indices (strict: A258117).
A075818 lists even Heinz numbers of 3-part partitions (strict: A075819).
A285508 lists Heinz numbers of non-strict triples.
A307719 counts 3-part pairwise coprime partitions (strict: A220377).
Subsequence of A332820.

Programs

  • Maple
    N:= 1000: # for terms <= N
    R:= NULL:
    for i from 1 by 2 do
      p:= ithprime(i);
      if p^3 >= N then break fi;
      for j from i by 2 do
        q:= ithprime(j);
        if p*q^2 >= N then break fi;
        for k from j by 2 do
          x:= p*q*ithprime(k);
          if x > N then break fi;
          R:= R,x;
    od od od:
    sort([R]); # Robert Israel, Jun 11 2025
  • Mathematica
    Select[Range[100],PrimeOmega[#]==3&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
  • PARI
    isok(m) = my(f=factor(m)); (bigomega(f)==3) && (#select(x->!(x%2), apply(primepi, f[,1]~)) == 0); \\ Michel Marcus, Nov 10 2020
    
  • Python
    from sympy import primerange
    from itertools import combinations_with_replacement as mc
    def aupto(limit):
        pois = [p for i, p in enumerate(primerange(2, limit//4+1)) if i%2 == 0]
        return sorted(set(a*b*c for a, b, c in mc(pois, 3) if a*b*c <= limit))
    print(aupto(971)) # Michael S. Branicky, Aug 20 2021
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A338471(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum((primepi(x//(k*m))+1>>1)-(b+1>>1)+1 for a,k in filter(lambda x:x[0]&1,enumerate(primerange(integer_nthroot(x,3)[0]+1),1)) for b,m in filter(lambda x:x[0]&1,enumerate(primerange(k,isqrt(x//k)+1),a))))
        return bisection(f,n,n) # Chai Wah Wu, Oct 18 2024

A338557 Products of three distinct prime numbers of even index.

Original entry on oeis.org

273, 399, 609, 741, 777, 903, 1113, 1131, 1281, 1443, 1491, 1653, 1659, 1677, 1729, 1869, 2067, 2109, 2121, 2247, 2373, 2379, 2451, 2639, 2751, 2769, 2919, 3021, 3081, 3171, 3219, 3367, 3423, 3471, 3477, 3633, 3741, 3801, 3857, 3913, 3939, 4047, 4053, 4173
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2020

Keywords

Comments

All terms are odd.
Also sphenic numbers (A007304) with all even prime indices (A031215).
Also Heinz numbers of strict integer partitions with 3 parts, all of which are even. These partitions are counted by A001399.

Examples

			The sequence of terms together with their prime indices begins:
     273: {2,4,6}     1869: {2,4,24}    3219: {2,10,12}
     399: {2,4,8}     2067: {2,6,16}    3367: {4,6,12}
     609: {2,4,10}    2109: {2,8,12}    3423: {2,4,38}
     741: {2,6,8}     2121: {2,4,26}    3471: {2,6,24}
     777: {2,4,12}    2247: {2,4,28}    3477: {2,8,18}
     903: {2,4,14}    2373: {2,4,30}    3633: {2,4,40}
    1113: {2,4,16}    2379: {2,6,18}    3741: {2,10,14}
    1131: {2,6,10}    2451: {2,8,14}    3801: {2,4,42}
    1281: {2,4,18}    2639: {4,6,10}    3857: {4,8,10}
    1443: {2,6,12}    2751: {2,4,32}    3913: {4,6,14}
    1491: {2,4,20}    2769: {2,6,20}    3939: {2,6,26}
    1653: {2,8,10}    2919: {2,4,34}    4047: {2,8,20}
    1659: {2,4,22}    3021: {2,8,16}    4053: {2,4,44}
    1677: {2,6,14}    3081: {2,6,22}    4173: {2,6,28}
    1729: {4,6,8}     3171: {2,4,36}    4179: {2,4,46}
		

Crossrefs

For the following, NNS means "not necessarily strict".
A007304 allows all prime indices (not just even) (NNS: A014612).
A046389 allows all odd primes (NNS: A046316).
A258117 allows products of any length (NNS: A066207).
A307534 is the version for odds instead of evens (NNS: A338471).
A337453 is a different ranking of ordered triples (NNS: A014311).
A338556 is the NNS version.
A001399(n-6) counts strict 3-part partitions (NNS: A001399(n-3)).
A005117 lists squarefree numbers, with even case A039956.
A078374 counts 3-part relatively prime strict partitions (NNS: A023023).
A075819 lists even Heinz numbers of strict triples (NNS: A075818).
A220377 counts 3-part pairwise coprime strict partitions (NNS: A307719).
A258116 lists squarefree numbers with all odd prime indices (NNS: A066208).
A285508 lists Heinz numbers of non-strict triples.

Programs

  • Mathematica
    Select[Range[1000],SquareFreeQ[#]&&PrimeOmega[#]==3&&OddQ[Times@@(1+PrimePi/@First/@FactorInteger[#])]&]
  • PARI
    isok(m) = my(f=factor(m)); (bigomega(f)==3) && (omega(f)==3) && (#select(x->(x%2), apply(primepi, f[,1]~)) == 0); \\ Michel Marcus, Nov 10 2020
    
  • Python
    from itertools import filterfalse
    from math import isqrt
    from sympy import primepi, primerange, nextprime, integer_nthroot
    def A338557(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum((primepi(x//(k*m))>>1)-(b>>1) for a,k in filterfalse(lambda x:x[0]&1,enumerate(primerange(3,integer_nthroot(x,3)[0]+1),2)) for b,m in filterfalse(lambda x:x[0]&1,enumerate(primerange(nextprime(k)+1,isqrt(x//k)+1),a+2))))
        return bisection(f,n,n) # Chai Wah Wu, Oct 18 2024

A338315 Number of integer partitions of n with no 1's whose distinct parts are pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 3, 2, 4, 4, 10, 6, 15, 13, 16, 21, 31, 29, 43, 41, 50, 63, 79, 81, 99, 113, 129, 145, 179, 197, 228, 249, 284, 328, 363, 418, 472, 522, 581, 655, 741, 828, 921, 1008, 1123, 1259, 1407, 1546, 1709, 1889, 2077, 2292, 2554, 2799, 3061, 3369
Offset: 0

Views

Author

Gus Wiseman, Oct 23 2020

Keywords

Comments

The Heinz numbers of these partitions are given by A337987. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The a(5) = 1 through a(13) = 15 partitions (empty column indicated by dot, A = 10, B = 11):
  32   .  43    53    54     73     65      75      76
          52    332   72     433    74      543     85
          322         522    532    83      552     94
                      3222   3322   92      732     A3
                                    443     5322    B2
                                    533     33222   544
                                    722             553
                                    3332            733
                                    5222            922
                                    32222           4333
                                                    5332
                                                    7222
                                                    33322
                                                    52222
                                                    322222
		

Crossrefs

A200976 is a pairwise non-coprime instead of pairwise coprime version.
A304709 allows 1's, with strict case A305713 and Heinz numbers A304711.
A318717 counts pairwise non-coprime strict partitions.
A337485 is the strict version, with Heinz numbers A337984.
A337987 gives the Heinz numbers of these partitions.
A338317 considers singletons coprime, with Heinz numbers A338316.
A007359 counts singleton or pairwise coprime partitions with no 1's.
A327516 counts pairwise coprime partitions, ranked by A302696.
A328673 counts partitions with no two distinct parts relatively prime.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime.
A337667 counts pairwise non-coprime compositions, ranked by A337666.
A337697 counts pairwise coprime compositions with no 1's.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&CoprimeQ@@Union[#]&]],{n,0,30}]

A338333 Number of relatively prime 3-part strict integer partitions of n with no 1's.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 7, 6, 10, 8, 14, 12, 18, 16, 24, 18, 30, 25, 34, 30, 44, 31, 52, 42, 56, 49, 69, 50, 80, 64, 83, 70, 102, 71, 114, 90, 112, 100, 140, 98, 153, 117, 153, 132, 184, 128, 195, 154, 196, 169, 234, 156, 252, 196, 241
Offset: 0

Views

Author

Gus Wiseman, Oct 30 2020

Keywords

Comments

The Heinz numbers of these partitions are the intersection of A005117 (strict), A005408 (no 1's), A014612 (length 3), and A289509 (relatively prime).

Examples

			The a(9) = 1 through a(19) = 14 triples (A = 10, B = 11, C = 12, D = 13, E = 14):
  432   532   542   543   643   653   654   754   764   765   865
              632   732   652   743   753   763   854   873   874
                          742   752   762   853   863   954   964
                          832   932   843   943   872   972   973
                                      852   952   953   A53   982
                                      942   B32   962   B43   A54
                                      A32         A43   B52   A63
                                                  A52   D32   A72
                                                  B42         B53
                                                  C32         B62
                                                              C43
                                                              C52
                                                              D42
                                                              E32
		

Crossrefs

A001399(n-9) does not require relative primality.
A005117 /\ A005408 /\ A014612 /\ A289509 gives the Heinz numbers.
A055684 is the 2-part version.
A284825 counts the case that is also pairwise non-coprime.
A337452 counts these partitions of any length.
A337563 is the pairwise coprime instead of relatively prime version.
A337605 is the pairwise non-coprime instead of relative prime version.
A338332 is the not necessarily strict version.
A338333*6 is the ordered version.
A000837 counts relatively prime partitions.
A008284 counts partitions by sum and length.
A078374 counts relatively prime strict partitions.
A101271 counts 3-part relatively prime strict partitions.
A220377 counts 3-part pairwise coprime strict partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,30}]

A338316 Odd numbers whose distinct prime indices are pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 45, 47, 49, 51, 53, 55, 59, 61, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 89, 93, 95, 97, 99, 101, 103, 107, 109, 113, 119, 121, 123, 125, 127, 131, 135, 137, 139, 141, 143, 145, 149, 151
Offset: 1

Views

Author

Gus Wiseman, Oct 24 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. a(n) gives the n-th Heinz number of an integer partition with no 1's and pairwise coprime distinct parts, where a singleton is always considered coprime (A338317).

Examples

			The sequence of terms together with their prime indices begins:
      1: {}          33: {2,5}       71: {20}
      3: {2}         35: {3,4}       73: {21}
      5: {3}         37: {12}        75: {2,3,3}
      7: {4}         41: {13}        77: {4,5}
      9: {2,2}       43: {14}        79: {22}
     11: {5}         45: {2,2,3}     81: {2,2,2,2}
     13: {6}         47: {15}        83: {23}
     15: {2,3}       49: {4,4}       85: {3,7}
     17: {7}         51: {2,7}       89: {24}
     19: {8}         53: {16}        93: {2,11}
     23: {9}         55: {3,5}       95: {3,8}
     25: {3,3}       59: {17}        97: {25}
     27: {2,2,2}     61: {18}        99: {2,2,5}
     29: {10}        67: {19}       101: {26}
     31: {11}        69: {2,9}      103: {27}
		

Crossrefs

A338315 does not consider singletons coprime, with Heinz numbers A337987.
A338317 counts the partitions with these Heinz numbers.
A337694 is a pairwise non-coprime instead of pairwise coprime version.
A007359 counts singleton or pairwise coprime partitions with no 1's, with Heinz numbers A302568.
A101268 counts pairwise coprime or singleton compositions, ranked by A335235.
A302797 lists squarefree numbers whose distinct parts are pairwise coprime.
A304709 counts partitions whose distinct parts are pairwise coprime, with Heinz numbers A304711.
A327516 counts pairwise coprime partitions, ranked by A302696.
A337485 counts pairwise coprime partitions with no 1's, with Heinz numbers A337984.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228.
A337697 counts pairwise coprime compositions with no 1's.

Programs

  • Mathematica
    Select[Range[1,100,2],#==1||PrimePowerQ[#]||CoprimeQ@@Union[PrimePi/@First/@FactorInteger[#]]&]
Previous Showing 31-37 of 37 results.