A331751
Numbers k such that A048675(sigma(k)) is equal to A048675(2*k).
Original entry on oeis.org
2, 6, 27, 28, 84, 270, 496, 1053, 1120, 1488, 1625, 1638, 3360, 3780, 4875, 8128, 10530, 24384, 66960, 147420, 167400, 406224, 611226, 775000, 872960, 943250, 1097280, 1245699, 1255338, 1303533, 1464320, 1686400, 1740024, 1922375, 1952500, 2011625, 2193408, 2325000, 2611440, 2618880, 2829750, 2941029, 4392960
Offset: 1
For n = 1053 = 3^4 * 13^1, A331750(1053) = A331750(81) + A331750(13) = 32+9 = 41, while A048675(2*1053) = A048675(2)+A048675(81)+A048675(13) = 1+8+32 = 41 also, thus 1053 is included in this sequence.
For n = 3360 = 2^5 * 3^1 * 5^1 * 7^1, A331750(3360) = A331750(32)+A331750(3)+A331750(5)+A331750(7) = 12+2+3+3 = 20, while A048675(2*3360) = A048675(2)+A048675(32)+A048675(3)+A048675(5)+A048675(7) = 1+5+2+4+8 = 20 also, thus 3360 is included in this sequence.
A065235
Odd numbers which can be written in precisely one way as sum of a subset of their proper divisors.
Original entry on oeis.org
8925, 32445, 351351, 442365, 159427275, 159587925, 159677175, 159784275, 159837825, 159855675, 159944925, 159962775, 160016325, 160105575, 160266225, 160284075, 160391175, 160444725, 160480425, 160533975, 160551825, 160766025, 161015925, 161033775, 161069475
Offset: 1
See A064771 for an example when the number is even.
Odd terms in
A064771 (a unique subset of proper divisors sums to the number).
A325807
Number of ways to partition the divisors of n into complementary subsets x and y for which gcd(n-Sum(x), n-Sum(y)) = 1. (Here only distinct unordered pairs of such subsets are counted.)
Original entry on oeis.org
1, 2, 1, 4, 1, 1, 1, 8, 3, 4, 1, 16, 1, 4, 2, 16, 1, 16, 1, 16, 4, 4, 1, 40, 3, 3, 4, 1, 1, 40, 1, 32, 2, 4, 4, 244, 1, 4, 4, 48, 1, 40, 1, 16, 8, 3, 1, 220, 3, 27, 2, 10, 1, 32, 4, 64, 4, 4, 1, 672, 1, 4, 14, 64, 4, 40, 1, 13, 2, 64, 1, 1205, 1, 4, 16, 10, 4, 40, 1, 236, 15, 4, 1, 864, 4, 3, 2, 64, 1, 640, 2, 16, 4, 4, 2, 537, 1, 26, 8, 241, 1, 40, 1, 64, 40
Offset: 1
For n = 1, its divisor set [1] can be partitioned only to an empty set [] and set [1], with sums 0 and 1 respectively, and gcd(1-0,1-1) = gcd(1,0) = 1, thus this partitioning is included, and a(1) = 1.
For n = 3, its divisor set [1, 3] can be partitioned as [] and [1,3] (sums 0 and 4, thus gcd(3-0,3-4) = 1), [1] and [3] (sums 1 and 3, thus gcd(3-1,3-3) = 2), thus a(3) = 1, and similarly a(p) = 1 for any other odd prime p as well.
For n = 6, its divisor set [1, 2, 3, 6] can be partitioned in eight ways as:
[] and [1, 2, 3, 6] (sums 0 and 12, gcd(6-0, 6-12) = 6),
[1, 2] and [3, 6] (sums 3 and 9, gcd(6-3, 6-9) = 3),
[1, 3] and [2, 6] (sums 4 and 8, gcd(6-4, 6-8) = 2),
[2] and [1, 3, 6] (sums 2 and 10, gcd(6-2, 6-10) = 4),
[3] and [1, 2, 6] (sums 3 and 9, gcd(6-3, 6-9) = 3),
[6] and [1, 2, 3] (sums 6 and 6, gcd(6-6, 6-6) = 0),
[1] and [2, 3, 6] (sums 1 and 11, gcd(6-1, 6-11) = 5),
[1, 6] and [2, 3] (sums 7 and 5, gcd(6-7, 6-5) = 1),
with only the last partitioning satisfying the required condition, thus a(6) = 1.
For n = 10, its divisor set [1, 2, 5, 10] can be partitioned in eight ways as:
[] and [1, 2, 5, 10] (sums 0 and 18, gcd(10-0, 10-18) = 2),
[1, 2] and [5, 10] (sums 3 and 15, gcd(10-3, 10-15) = 1),
[1, 5] and [2, 10] (sums 6 and 12, gcd(10-6, 10-12) = 2),
[2] and [1, 5, 10] (sums 2 and 16, gcd(10-2, 10-16) = 2),
[5] and [1, 2, 10] (sums 5 and 13, gcd(10-5, 10-13) = 1),
[10] and [1, 2, 5] (sums 10 and 8, gcd(10-10, 10-8) = 2),
[1] and [2, 5, 10] (sums 1 and 17, gcd(10-1, 10-17) = 1),
[1, 10] and [2, 5] (sums 11 and 7, gcd(10-11, 10-7) = 1),
of which four satisfy the required condition, thus a(10) = 4.
-
Table[Function[d, Count[DeleteDuplicates[Sort /@ Map[{#, Complement[d, #]} &, Subsets@ d]], ?(CoprimeQ @@ (n - Total /@ #) &)]]@ Divisors@ n, {n, 105}] (* _Michael De Vlieger, May 27 2019 *)
-
A325807(n) = { my(divs=divisors(n), s=sigma(n),r); sum(b=0,(2^(-1+length(divs)))-1,r=sumbybits(divs,2*b);(1==gcd(n-(s-r),n-r))); };
sumbybits(v,b) = { my(s=0,i=1); while(b>0,s += (b%2)*v[i]; i++; b >>= 1); (s); };
A348743
Odd nonsquares k for which A161942(k) >= k, where A161942 is the odd part of sigma.
Original entry on oeis.org
2205, 19845, 108045, 143325, 178605, 187425, 236925, 266805, 319725, 353925, 372645, 407925, 452025, 462825, 584325, 637245, 646425, 658125, 672525, 789525, 796005, 804825, 845325, 920205, 972405, 981225, 1007325, 1055925, 1069425, 1102725, 1113525, 1116225, 1166445, 1201725, 1245825, 1289925, 1378125, 1380825, 1442925
Offset: 1
Cf.
A386427 (a subsequence, which agrees for a very long time).
Definition changed (from > to >=) to formally include also any hypothetical odd perfect numbers -
Antti Karttunen, Nov 28 2024
A326064
Odd composite numbers n, not squares of primes, such that (A001065(n) - A032742(n)) divides (n - A032742(n)), where A032742 gives the largest proper divisor, and A001065 is the sum of proper divisors.
Original entry on oeis.org
117, 775, 10309, 56347, 88723, 2896363, 9597529, 12326221, 12654079, 25774633, 29817121, 63455131, 105100903, 203822581, 261019543, 296765173, 422857021, 573332713, 782481673, 900952687, 1129152721, 3350861677, 3703086229, 7395290407, 9347001661, 9350506057
Offset: 1
-
Select[Range[15, 10^6 + 1, 2], And[! PrimePowerQ@ #1, Mod[#1 - #2, #2 - #3] == 0] & @@ {#, DivisorSigma[1, #] - #, Divisors[#][[-2]]} &] (* Michael De Vlieger, Jun 22 2019 *)
-
A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
A060681(n) = (n-A032742(n));
A318505(n) = if(1==n,0,(sigma(n)-A032742(n))-n);
isA326064(n) = if((n%2)&&(2!=isprimepower(n)), my(s=A032742(n), t=sigma(n)-s); (gcd(t-n, n-A032742(n)) == t-n), 0);
A332228
Odd numbers n, not powers of primes, such that sigma(n) is congruent to 2 modulo 8.
Original entry on oeis.org
153, 325, 369, 657, 725, 801, 833, 845, 873, 925, 1017, 1233, 1325, 1377, 1445, 1525, 1737, 2009, 2057, 2097, 2169, 2313, 2525, 2529, 2725, 2817, 2925, 3033, 3177, 3321, 3577, 3609, 3681, 3725, 3757, 3897, 3925, 4041, 4113, 4205, 4325, 4361, 4525, 4689, 4753, 4901, 4925, 4961, 5121, 5193, 5337, 5409, 5537, 5553, 5725
Offset: 1
A386425
Odd composites k such that sigma(k) has the same powerful part as k, where sigma is the sum of divisors function.
Original entry on oeis.org
153, 801, 1773, 3725, 4689, 4753, 5013, 6957, 8577, 8725, 9549, 9873, 11493, 13437, 14409, 15381, 18621, 19269, 21213, 21537, 23481, 25101, 26073, 26225, 28989, 29161, 29313, 29961, 32229, 33849, 34173, 36117, 38061, 39033, 40653, 42597, 43893, 47457, 47781, 48725, 48753, 51669, 52317, 54261, 56953, 57177, 57501
Offset: 1
Nonsquare terms form a subsequence of
A228058.
-
rad[n_] := Times @@ First /@ FactorInteger[n];a057521[n_] := n/Denominator[n/rad[n]^2];Select[Range[9,57501,2],!PrimeQ[#]&&a057521[DivisorSigma[1,#]]==a057521[#]&] (* James C. McMahon, Aug 18 2025 *)
-
A057521(n)=my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1))
isA386425(n) = ((n>1) && (n%2) && !isprime(n) && (A057521(sigma(n))==A057521(n)));
A162284
Odd numbers n such that b(n) >= n and b(b(n)) >= n, where b(n) = A161942(n) = oddpart(sigma(n)).
Original entry on oeis.org
1, 81, 18966025, 135187129, 164275489, 350561925, 445421025, 598047025, 649587169, 748733769, 850830561, 960362325, 1055925025, 1341097641, 1406175001, 1476326929, 1520766009, 1536248025, 1591004025, 1735566525
Offset: 1
A228056
Numbers of the form p * m^2, where p is prime and m > 1.
Original entry on oeis.org
8, 12, 18, 20, 27, 28, 32, 44, 45, 48, 50, 52, 63, 68, 72, 75, 76, 80, 92, 98, 99, 108, 112, 116, 117, 124, 125, 128, 147, 148, 153, 162, 164, 171, 172, 175, 176, 180, 188, 192, 200, 207, 208, 212, 236, 242, 243, 244, 245, 252, 261, 268, 272, 275, 279, 284
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Raghavendra Bhat, Distribution of Square Prime Numbers, arXiv:2109.10238 [math.NT], 2021.
- Raghavendra Bhat, An Algebraic Structure for Square-Prime Numbers, arXiv:2303.14296 [math.GM], 2023.
- Raghavendra Bhat, Cristian Cobeli, and Alexandru Zaharescu, Filtered rays over iterated absolute differences on layers of integers, arXiv:2309.03922 [math.NT], 2023. See 3.1 p. 9.
-
import Data.List (partition)
a228056 n = a228056_list !! (n-1)
a228056_list = filter f [1..] where
f x = length us == 1 && (head us > 1 || not (null vs)) where
(us,vs) = partition odd $ a124010_row x
-- Reinhard Zumkeller, Aug 14 2013
-
nn = 300; Union[Select[Flatten[Table[p*n^2, {p, Prime[Range[PrimePi[nn/4]]]}, {n, 2, Sqrt[nn/2]}]], # < nn &]]
-
list(lim)=my(v=List()); forfactored(n=2, lim\1, my(e=n[2][, 2]); if(vecsum(e%2)==1 && e!=[1]~, listput(v, n[1]))); Vec(v); \\ Charles R Greathouse IV, Oct 01 2021
-
from math import isqrt
from sympy import primepi
def A228056(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(primepi(x//y**2) for y in range(2,isqrt(x)+1))
return bisection(f,n,n) # Chai Wah Wu, Jun 06 2025
A324898
Odd numbers k such that sigma(k) is congruent to 2 modulo 4 and k = A318458(k), where A318458(k) is bitwise-AND of k and sigma(k)-k.
Original entry on oeis.org
236925, 3847725, 51122925, 69468525, 151141725, 154669725, 269748225, 344211525, 415565325, 445817925, 551569725, 1111904325, 1112565825, 1113756525, 1175717025, 1400045625, 1631666925, 1695170925, 1820873925, 1915847325, 1946981925, 2179080225, 2321121825, 2453690925, 2460041325, 2491740225, 3223500525, 3493517445, 3775103325
Offset: 1
-
Select[Range[10^5, 10^8, 2], And[Mod[#2, 4] == 2, BitAnd[#1, #2 - #1] == #1] & @@ {#, DivisorSigma[1, #]} &] (* Michael De Vlieger, Jun 22 2019 *)
-
for(n=1, oo, if((n%2)&&2==((t=sigma(n))%4)&&(bitand(n, t-n)==n), print1(n,", ")));
Comments