cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A266273 Decimal expansion of zeta'(-18) (the derivative of Riemann's zeta function at -18) (negated).

Original entry on oeis.org

1, 3, 7, 4, 2, 7, 6, 8, 2, 5, 0, 2, 1, 4, 0, 5, 4, 4, 3, 5, 2, 2, 0, 5, 6, 4, 1, 9, 0, 5, 1, 8, 5, 5, 1, 0, 7, 3, 0, 9, 5, 3, 7, 2, 1, 5, 7, 7, 0, 4, 9, 8, 5, 6, 0, 4, 7, 4, 5, 6, 5, 1, 5, 3, 4, 8, 8, 8, 9, 4, 6, 3, 3, 7, 8, 8, 5, 8, 5, 3, 8, 8, 2, 3, 4, 0, 6, 0, 9, 9, 0, 0, 3, 2, 3
Offset: 2

Views

Author

G. C. Greubel, Dec 25 2015

Keywords

Examples

			-13.74276825021405443522056419051855107309537215770498560....
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).

Programs

  • Mathematica
    RealDigits[N[Zeta'[-18], 100]]

Formula

zeta'(-18) = -(97692469875*zeta(19))/(8*Pi^18) = - log(A(18)).
Equals -(43867/3192)*(zeta(19)/zeta(18)).

Extensions

Offset corrected by Rick L. Shepherd, May 30 2016

A266274 Decimal expansion of zeta'(-19) (the derivative of Riemann's zeta function at -19) (negated).

Original entry on oeis.org

2, 9, 9, 6, 5, 5, 2, 9, 8, 3, 1, 3, 9, 2, 3, 5, 1, 9, 3, 9, 4, 3, 1, 8, 6, 5, 2, 9, 7, 2, 7, 4, 2, 0, 1, 7, 9, 1, 9, 0, 8, 2, 2, 6, 1, 0, 9, 1, 1, 5, 5, 6, 5, 9, 1, 5, 8, 8, 1, 8, 7, 1, 6, 6, 8, 2, 0, 5, 7, 6, 1, 6, 0, 2, 8, 6, 7, 6, 7, 7, 6, 1, 1, 7, 2, 6, 8, 7, 3, 6, 3, 0, 3, 4
Offset: 2

Views

Author

G. C. Greubel, Dec 26 2015

Keywords

Examples

			-29.965529831392351939431865297274201791908226109115565915881....
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266275 (zeta'(-20)).

Programs

  • Mathematica
    RealDigits[N[Zeta'[-19], 100]]

Formula

zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant.
zeta'(-19) = -48069674759189/512143632000 - log(A(19)).

Extensions

Offset corrected by Rick L. Shepherd, May 30 2016

A266275 Decimal expansion of zeta'(-20) (the derivative of Riemann's zeta function at -20).

Original entry on oeis.org

1, 3, 2, 2, 8, 0, 9, 9, 7, 5, 0, 4, 2, 1, 2, 5, 1, 4, 5, 2, 7, 0, 9, 8, 2, 1, 1, 5, 8, 5, 7, 8, 5, 5, 1, 8, 6, 8, 0, 6, 4, 8, 0, 0, 9, 9, 9, 9, 5, 5, 0, 3, 1, 4, 5, 8, 8, 4, 7, 4, 5, 0, 1, 9, 2, 4, 1, 4, 2, 9, 1, 5, 7, 1, 9, 9, 4, 0, 4, 2, 9, 3, 8, 7, 7, 8, 3, 9, 4, 6, 4
Offset: 3

Views

Author

G. C. Greubel, Dec 26 2015

Keywords

Examples

			132.28099750421251452709821158578551868064800999955031458847450192414...
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)).

Programs

  • Mathematica
    RealDigits[N[Zeta'[-20], 100]]

Formula

zeta'(-20) = (9280784638125*zeta(21))/(8*Pi^20) = - log(A(20)).
Equals (174611/1320)*(zeta(21)/zeta(20)).

Extensions

Offset corrected by Rick L. Shepherd, May 30 2016

A261506 Decimal expansion of -zeta'(4).

Original entry on oeis.org

0, 6, 8, 9, 1, 1, 2, 6, 5, 8, 9, 6, 1, 2, 5, 3, 7, 9, 8, 4, 8, 8, 2, 9, 3, 6, 5, 5, 8, 7, 4, 4, 0, 8, 2, 7, 1, 5, 0, 0, 1, 6, 3, 7, 4, 8, 7, 1, 3, 7, 8, 4, 6, 3, 8, 2, 7, 5, 8, 5, 7, 0, 6, 0, 1, 8, 4, 2, 8, 4, 9, 8, 5, 2, 7, 6, 2, 1, 2, 0, 1, 3, 3, 4, 7, 8, 0, 4, 1, 0, 3, 8, 9, 8, 4, 7, 6, 0, 2, 2, 9, 0, 1, 8, 8, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2015

Keywords

Examples

			0.06891126589612537984882936558744082715001637487137...
		

Crossrefs

Cf. A075700 (0), A073002 (2), A244115 (3).
Cf. A084448 (-1), A240966 (-2), A259068 (-3), A259069 (-4), A259070 (-5), A259071 (-6), A259072 (-7), A259073 (-8).

Programs

  • Mathematica
    Flatten[{0, RealDigits[-Zeta'[4], 10, 105][[1]]}]

Formula

Sum_{n>=1} log(n) / n^4.

A324993 Decimal expansion of zeta'(-1, 1/3).

Original entry on oeis.org

0, 9, 3, 7, 2, 6, 2, 0, 1, 7, 6, 0, 7, 7, 9, 4, 2, 7, 4, 8, 4, 2, 0, 0, 8, 9, 9, 1, 3, 3, 1, 9, 2, 8, 6, 7, 3, 6, 8, 8, 3, 7, 2, 8, 6, 9, 3, 8, 7, 3, 8, 0, 2, 1, 5, 2, 5, 4, 4, 8, 0, 9, 2, 5, 4, 5, 4, 3, 4, 9, 9, 7, 9, 5, 0, 9, 2, 3, 3, 5, 1, 1, 7, 1, 6, 7, 2, 7, 4, 9, 4, 7, 5, 5, 4, 0, 7, 6, 0, 4, 0, 2, 9, 8, 5, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2019

Keywords

Examples

			0.093726201760779427484200899133192867368837286938738021525448092545434...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(1,-1,1/3), 120);
    evalf(-Pi/(18*sqrt(3)) - log(3)/72 + Psi(1, 1/3) / (12*sqrt(3)*Pi) - Zeta(1, -1)/3, 120);
  • Mathematica
    RealDigits[Derivative[1, 0][Zeta][-1, 1/3], 10, 120][[1]]
    N[With[{k=1}, -Sqrt[3] * (9^k - 1) * BernoulliB[2*k] * Pi / (9^k * 8*k) - 3*BernoulliB[2*k] * Log[3] / 9^k / 4 / k - (-1)^k * PolyGamma[2*k-1, 1/3] / 2 / Sqrt[3] / (6*Pi)^(2*k-1) - (9^k-3)*Zeta'[-2*k+1]/2/9^k], 120]
  • PARI
    zetahurwitz'(-1, 1/3) \\ Michel Marcus, Mar 24 2019

Formula

Equals -Pi/(18*sqrt(3)) - log(3)/72 + PolyGamma(1, 1/3) / (12*sqrt(3)*Pi) - Zeta'(-1)/3.
A324993 + A324994 = -log(3)/36 - 2*Zeta'(-1)/3.

A324995 Decimal expansion of zeta'(-1, 1/4).

Original entry on oeis.org

0, 9, 3, 5, 6, 7, 8, 6, 8, 9, 7, 0, 2, 6, 1, 0, 6, 1, 1, 8, 6, 3, 3, 6, 0, 7, 1, 6, 4, 7, 4, 4, 6, 3, 1, 0, 0, 6, 1, 5, 2, 1, 0, 8, 6, 0, 3, 8, 3, 5, 9, 5, 4, 0, 5, 2, 3, 5, 6, 5, 6, 8, 0, 5, 7, 2, 6, 0, 6, 8, 7, 1, 6, 7, 8, 4, 3, 1, 8, 6, 2, 0, 2, 6, 5, 9, 7, 3, 4, 3, 6, 1, 7, 3, 4, 7, 1, 0, 9, 1, 6, 9, 5, 4, 0, 3
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2019

Keywords

Examples

			0.093567868970261061186336071647446310061521086038359540523565680572606...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(1,-1,1/4), 120);
    evalf(-Pi/32 + Psi(1, 1/4)/(32*Pi) - Zeta(1,-1)/8, 120);
  • Mathematica
    RealDigits[Derivative[1, 0][Zeta][-1, 1/4], 10, 120][[1]]
    N[With[{k=1}, -(4^k-1) * BernoulliB[2*k] * Pi / 4^(k+1)/k + (4^(k-1)-1)*BernoulliB[2*k] * Log[2]/k/2^(4*k-1) - (-1)^k*PolyGamma[2*k-1,1/4] / 4 / (8*Pi)^(2*k-1) - (4^k - 2)*Zeta'[1-2*k]/2^(4*k)], 120]
  • PARI
    zetahurwitz'(-1, 1/4) \\ Michel Marcus, Mar 24 2019

Formula

Equals -Pi/32 + PolyGamma(1, 1/4)/(32*Pi) - Zeta'(-1)/8.
A324995 + A324996 = -Zeta'(-1)/4.
Equals A006752/(4*Pi) + log(A074962)/8 - 1/96. - Artur Jasinski, Feb 23 2023

A324996 Decimal expansion of zeta'(-1, 3/4) (negated).

Original entry on oeis.org

0, 5, 2, 2, 1, 2, 5, 8, 3, 0, 4, 5, 1, 4, 8, 3, 2, 8, 8, 8, 2, 8, 5, 6, 1, 5, 6, 5, 8, 6, 7, 5, 1, 1, 4, 9, 3, 7, 0, 5, 1, 1, 9, 9, 0, 9, 5, 4, 5, 5, 9, 0, 9, 4, 6, 0, 6, 9, 3, 5, 1, 0, 3, 9, 8, 3, 2, 6, 6, 9, 4, 6, 7, 6, 1, 7, 8, 7, 5, 6, 8, 8, 3, 6, 7, 1, 6, 0, 6, 8, 5, 3, 4, 2, 1, 9, 9, 2, 0, 2, 8, 4, 9, 4, 6, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2019

Keywords

Examples

			-0.05221258304514832888285615658675114937051199095455909460693510398326...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(1,-1,3/4), 120);
    evalf(Pi/32 - Psi(1, 1/4)/(32*Pi) - Zeta(1,-1)/8, 120);
  • Mathematica
    RealDigits[Derivative[1, 0][Zeta][-1, 3/4], 10, 120][[1]]
    N[With[{k=1}, (4^k-1) * BernoulliB[2*k] * Pi/4^(k+1)/k + (4^(k-1) - 1) * BernoulliB[2*k] * Log[2]/k/2^(4*k-1) + (-1)^k*PolyGamma[2*k-1,1/4] / 4 / (8*Pi)^(2*k-1) - (4^k-2)*Zeta'[1-2*k]/2^(4*k)], 120]
  • PARI
    zetahurwitz'(-1, 3/4) \\ Michel Marcus, Mar 24 2019

Formula

Equals Pi/32 - PolyGamma(1, 1/4)/(32*Pi) - Zeta'(-1)/8.
A324995 + A324996 = -Zeta'(-1)/4.

A324994 Decimal expansion of zeta'(-1, 2/3) (negated).

Original entry on oeis.org

0, 1, 3, 9, 6, 2, 4, 4, 7, 3, 1, 2, 3, 7, 0, 7, 4, 3, 8, 8, 0, 3, 4, 4, 6, 0, 4, 4, 4, 1, 4, 0, 9, 2, 6, 3, 9, 8, 8, 5, 7, 6, 6, 5, 9, 9, 8, 8, 1, 2, 4, 3, 1, 7, 1, 8, 4, 8, 4, 1, 3, 9, 7, 5, 7, 4, 9, 0, 3, 3, 7, 2, 9, 8, 4, 8, 3, 3, 2, 6, 2, 8, 5, 6, 2, 5, 6, 4, 5, 3, 5, 5, 4, 2, 4, 9, 7, 0, 3, 6, 2, 1, 5, 1, 0, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2019

Keywords

Examples

			-0.01396244731237074388034460444140926398857665998812431718484139757490...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(1,-1,2/3), 120);
    evalf(Pi/(18*sqrt(3)) - log(3)/72 - Psi(1, 1/3) / (12*sqrt(3)*Pi) - Zeta(1,-1)/3, 120);
  • Mathematica
    RealDigits[Derivative[1, 0][Zeta][-1, 2/3], 10, 120][[1]]
    N[With[{k=1}, Sqrt[3] * (9^k - 1) * BernoulliB[2*k] * Pi / (9^k * 8*k) - 3*BernoulliB[2*k] * Log[3] / 9^k / 4 / k + (-1)^k * PolyGamma[2*k-1,1/3] / 2 / Sqrt[3] / (6*Pi)^(2*k-1) - (9^k-3)*Zeta'[-2*k+1]/2/9^k], 120]
  • PARI
    zetahurwitz'(-1, 2/3) \\ Michel Marcus, Mar 24 2019

Formula

Equals Pi/(18*sqrt(3)) - log(3)/72 - PolyGamma(1, 1/3) / (12*sqrt(3)*Pi) - Zeta'(-1)/3.
A324993 + A324994 = -log(3)/36 - 2*Zeta'(-1)/3.

A324997 Decimal expansion of zeta'(-1, 1/6).

Original entry on oeis.org

0, 7, 0, 4, 5, 2, 5, 9, 2, 3, 6, 7, 2, 0, 4, 1, 4, 2, 4, 7, 5, 4, 6, 2, 1, 6, 6, 8, 0, 6, 0, 3, 5, 9, 2, 7, 7, 8, 5, 1, 5, 5, 0, 2, 7, 5, 4, 5, 8, 3, 0, 2, 0, 6, 4, 7, 7, 0, 1, 9, 3, 3, 2, 8, 6, 8, 3, 6, 2, 4, 5, 0, 0, 4, 3, 2, 0, 7, 3, 6, 5, 0, 4, 7, 7, 2, 9, 8, 1, 8, 9, 4, 4, 7, 4, 8, 1, 2, 1, 1, 4, 9, 9, 7, 5, 4
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2019

Keywords

Examples

			0.070452592367204142475462166806035927785155027545830206477019332868362...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(1,-1,1/6), 120);
    evalf(-Pi/(12*sqrt(3)) + log(2)/72 + log(3)/144 + Psi(1, 1/3)/(8*sqrt(3)*Pi) + Zeta(1,-1)/6, 120);
  • Mathematica
    RealDigits[Derivative[1, 0][Zeta][-1, 1/6], 10, 120][[1]]
    N[With[{k=1}, -(9^k - 1) * (2^(2*k-1) + 1) * BernoulliB[2*k] * Pi/(8*Sqrt[3]*k*6^(2*k - 1)) + BernoulliB[2*k] * (3^(2*k-1) - 1)*Log[2]/(4*k*6^(2*k - 1)) + BernoulliB[2*k]*(2^(2*k-1) - 1) * Log[3]/(4*k*6^(2*k-1)) - (-1)^k*(2^(2*k-1) + 1) * PolyGamma[2*k-1,1/3] / (2*Sqrt[3]*(12*Pi)^(2*k - 1))+(2^(2*k - 1) - 1)*(3^(2*k - 1) - 1)*Zeta'[1-2*k]/2/6^(2*k-1)], 120]
  • PARI
    zetahurwitz'(-1, 1/6) \\ Michel Marcus, Mar 24 2019

Formula

Equals -Pi/(12*sqrt(3)) + log(2)/72 + log(3)/144 + PolyGamma(1, 1/3)/(8*sqrt(3)*Pi) + Zeta'(-1)/6.
A324997 + A324998 = log(2)/36 + log(3)/72 + Zeta'(-1)/3.

A324998 Decimal expansion of zeta'(-1, 5/6) (negated).

Original entry on oeis.org

0, 9, 1, 0, 8, 0, 3, 8, 1, 2, 4, 2, 5, 2, 1, 1, 1, 4, 5, 7, 1, 3, 5, 6, 0, 8, 8, 5, 5, 5, 8, 6, 7, 2, 6, 9, 2, 5, 0, 9, 6, 5, 8, 9, 2, 8, 4, 4, 4, 6, 3, 3, 0, 1, 5, 8, 8, 4, 1, 4, 9, 0, 2, 3, 1, 2, 1, 4, 5, 1, 0, 6, 3, 6, 0, 4, 2, 7, 5, 5, 5, 9, 9, 4, 1, 6, 3, 9, 8, 5, 5, 9, 9, 9, 3, 7, 5, 7, 4, 8, 8, 6, 7, 6, 8, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2019

Keywords

Examples

			-0.09108038124252111457135608855586726925096589284446330158841490231214...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(1,-1,5/6), 120);
    evalf(Pi/(12*sqrt(3)) + log(2)/72 + log(3)/144 - Psi(1, 1/3)/(8*sqrt(3)*Pi) + Zeta(1,-1)/6, 120);
  • Mathematica
    RealDigits[Derivative[1, 0][Zeta][-1, 5/6], 10, 120][[1]]
    N[With[{k=1}, ((9^k-1)*(2^(2*k-1) + 1)*BernoulliB[2*k]*Pi/(8*Sqrt[3]*k*6^(2*k-1)) + BernoulliB[2*k]*(3^(2*k-1) - 1) * Log[2]/(4*k*6^(2*k-1)) + BernoulliB[2*k]*(2^(2*k-1)-1) * Log[3]/(4*k*6^(2*k-1)) + (-1)^k*(2^(2*k-1) + 1) * PolyGamma[2*k-1,1/3] / (2*Sqrt[3]*(12*Pi)^(2*k-1)) + (2^(2*k - 1) - 1)*(3^(2*k - 1) - 1)*Zeta'[1-2*k]/2/6^(2*k-1))], 120]
  • PARI
    zetahurwitz'(-1, 5/6) \\ Michel Marcus, Mar 24 2019

Formula

Equals Pi/(12*sqrt(3)) + log(2)/72 + log(3)/144 - PolyGamma(1, 1/3)/(8*sqrt(3)*Pi) + Zeta'(-1)/6.
A324997 + A324998 = log(2)/36 + log(3)/72 + Zeta'(-1)/3.
Previous Showing 11-20 of 23 results. Next