A010974
a(n) = binomial(n,21).
Original entry on oeis.org
1, 22, 253, 2024, 12650, 65780, 296010, 1184040, 4292145, 14307150, 44352165, 129024480, 354817320, 927983760, 2319959400, 5567902560, 12875774670, 28781143380, 62359143990, 131282408400, 269128937220, 538257874440, 1052049481860, 2012616400080, 3773655750150
Offset: 21
- T. D. Noe, Table of n, a(n) for n = 21..1000
- Milan Janjic, Two Enumerative Functions.
- Index entries for linear recurrences with constant coefficients, signature (22,-231,1540,-7315,26334,-74613,170544,-319770,497420,-646646,705432,-646646,497420,-319770,170544,-74613,26334,-7315,1540,-231,22,-1).
-
[ Binomial(n,21): n in [21..80]]; // Vincenzo Librandi, Mar 26 2011
-
seq(binomial(n,21),n=21..41); # Zerinvary Lajos, Aug 04 2008
-
Table[Binomial[n,21],{n,21,50}] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *)
-
for(n=21, 50, print1(binomial(n,21), ", ")) \\ G. C. Greubel, Nov 23 2017
A010976
Binomial coefficient C(n,23).
Original entry on oeis.org
1, 24, 300, 2600, 17550, 98280, 475020, 2035800, 7888725, 28048800, 92561040, 286097760, 834451800, 2310789600, 6107086800, 15471286560, 37711260990, 88732378800, 202112640600, 446775310800, 960566918220, 2012616400080, 4116715363800, 8233430727600
Offset: 23
- T. D. Noe, Table of n, a(n) for n = 23..1000
- Index entries for linear recurrences with constant coefficients, signature (24,-276,2024,-10626,42504,-134596,346104,-735471,1307504,-1961256,2496144,-2704156,2496144,-1961256,1307504,-735471,346104,-134596,42504,-10626,2024,-276,24,-1).
-
[Binomial(n,23): n in [23..90]]; // Vincenzo Librandi, Mar 26 2011
-
seq(binomial(n,23), n=23..43); # Zerinvary Lajos, Aug 04 2008
-
Table[Binomial[n,23],{n,23,50}] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2011 *)
-
for(n=23, 50, print1(binomial(n,23), ", ")) \\ G. C. Greubel, Nov 23 2017
A010977
a(n) = binomial coefficient C(n,24).
Original entry on oeis.org
1, 25, 325, 2925, 20475, 118755, 593775, 2629575, 10518300, 38567100, 131128140, 417225900, 1251677700, 3562467300, 9669554100, 25140840660, 62852101650, 151584480450, 353697121050, 800472431850, 1761039350070, 3773655750150, 7890371113950, 16123801841550
Offset: 24
- T. D. Noe, Table of n, a(n) for n = 24..1000
- Index entries for linear recurrences with constant coefficients, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
-
[ Binomial(n,24): n in [24..90]]; // Vincenzo Librandi, Mar 26 2011
-
seq(binomial(n,24),n=24..41); # Zerinvary Lajos, Aug 04 2008
-
Table[Binomial[n,24],{n,24,50}] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2011 *)
-
x='x+O('x^50); Vec(x^24/(1-x)^25) \\ G. C. Greubel, Nov 23 2017
A010995
Binomial coefficient C(n,42).
Original entry on oeis.org
1, 43, 946, 14190, 163185, 1533939, 12271512, 85900584, 536878650, 3042312350, 15820024220, 76223753060, 343006888770, 1451182990950, 5804731963800, 22057981462440, 79960182801345, 277508869722315, 925029565741050, 2969831763694950, 9206478467454345
Offset: 42
- T. D. Noe, Table of n, a(n) for n = 42..1000
- Matthias Beck and Serkan Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
- Index entries for linear recurrences with constant coefficients, signature (43, -903, 12341, -123410, 962598, -6096454, 32224114, -145008513, 563921995, -1917334783, 5752004349, -15338678264, 36576848168, -78378960360, 151532656696, -265182149218, 421171648758, -608359048206, 800472431850, -960566918220, 1052049481860, -1052049481860, 960566918220, -800472431850, 608359048206, -421171648758, 265182149218, -151532656696, 78378960360, -36576848168, 15338678264, -5752004349, 1917334783, -563921995, 145008513, -32224114, 6096454, -962598, 123410, -12341, 903, -43, 1).
-
[Binomial(n, 42): n in [42..70]]; // Vincenzo Librandi, Jun 12 2013
-
seq(binomial(n,42),n=42..57); # Zerinvary Lajos, Dec 20 2008
-
Table[Binomial[n,42],{n,42,70}] (* Vladimir Joseph Stephan Orlovsky, May 16 2011 *)
A017717
Binomial coefficients C(n,53).
Original entry on oeis.org
1, 54, 1485, 27720, 395010, 4582116, 45057474, 386206920, 2944827765, 20286591270, 127805525001, 743595781824, 4027810484880, 20448884000160, 97862516286480, 443643407165376, 1913212193400684, 7877932561061640
Offset: 53
-
[Binomial(n,53): n in [53..80]]; // G. C. Greubel, Nov 03 2018
-
Table[Binomial[n,53],{n,53,80}] (* Vladimir Joseph Stephan Orlovsky, May 16 2011 *)
-
for(n=53, 80, print1(binomial(n,53), ", ")) \\ G. C. Greubel, Nov 03 2018
-
[binomial(n, 53) for n in range(53,71)] # Zerinvary Lajos, May 23 2009
A017719
Binomial coefficients C(n,55).
Original entry on oeis.org
1, 56, 1596, 30856, 455126, 5461512, 55525372, 491796152, 3872894697, 27540584512, 179013799328, 1074082795968, 5996962277488, 31368725759168, 154603005527328, 721480692460864, 3201570572795084, 13559593014190944
Offset: 55
-
[Binomial(n,55): n in [55..80]]; // G. C. Greubel, Nov 03 2018
-
Table[Binomial[n,55],{n,55,80}] (* Vladimir Joseph Stephan Orlovsky, May 16 2011 *)
-
for(n=55, 80, print1(binomial(n,55), ", ")) \\ G. C. Greubel, Nov 03 2018
-
[binomial(n, 55) for n in range(55,73)] # Zerinvary Lajos, May 23 2009
A017764
a(n) = binomial coefficient C(n,100).
Original entry on oeis.org
1, 101, 5151, 176851, 4598126, 96560646, 1705904746, 26075972546, 352025629371, 4263421511271, 46897636623981, 473239787751081, 4416904685676756, 38393094575497956, 312629484400483356, 2396826047070372396, 17376988841260199871, 119594570260437846171
Offset: 100
Cf. similar sequences of the binomial coefficients C(n,k):
A000012 (k = 0),
A001477 (k = 1),
A000217 (k = 2),
A000292 (k = 3),
A000332 (k = 4),
A000389 (k = 5),
A000579-
A000582 (k = 6..9)
A001287 (k = 10),
A001288 (k = 11),
A010965-
A011001 (k = 12..48),
A017713-
A017763 (k = 49..99), this sequence (k = 100).
-
[Binomial(n,100): n in [100..130]]; // G. C. Greubel, Nov 24 2017
-
Table[Binomial[n, 100], {n, 100, 5!}] (* Vladimir Joseph Stephan Orlovsky, Sep 25 2008 *)
-
a(n)=binomial(n,100) \\ Charles R Greathouse IV, Jun 28 2012
-
A017764_list, m = [], [1]*101
for _ in range(10**2):
A017764_list.append(m[-1])
for i in range(100):
m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
-
[binomial(n, 100) for n in range(100,115)] # Zerinvary Lajos, May 23 2009
A010973
a(n) = binomial(n,20).
Original entry on oeis.org
1, 21, 231, 1771, 10626, 53130, 230230, 888030, 3108105, 10015005, 30045015, 84672315, 225792840, 573166440, 1391975640, 3247943160, 7307872110, 15905368710, 33578000610, 68923264410, 137846528820, 269128937220, 513791607420, 960566918220, 1761039350070
Offset: 20
- T. D. Noe, Table of n, a(n) for n = 20..1000
- Milan Janjic, Two Enumerative Functions.
- Index entries for linear recurrences with constant coefficients, signature (21, -210, 1330, -5985, 20349, -54264, 116280, -203490, 293930, -352716, 352716, -293930, 203490, -116280, 54264, -20349, 5985, -1330, 210, -21, 1).
-
[ Binomial(n,20): n in [20..80]]; // Vincenzo Librandi, Mar 26 2011
-
seq(binomial(n,20),n=20..40); # Zerinvary Lajos, Aug 04 2008
-
Table[Binomial[n,20],{n,20,50}] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *)
-
for(n=20,50, print1(binomial(n,20), ", ")) \\ G. C. Greubel, Nov 23 2017
Some formulas adjusted to the offset by
R. J. Mathar, Jul 07 2009
A010975
a(n) = binomial(n,22).
Original entry on oeis.org
1, 23, 276, 2300, 14950, 80730, 376740, 1560780, 5852925, 20160075, 64512240, 193536720, 548354040, 1476337800, 3796297200, 9364199760, 22239974430, 51021117810, 113380261800, 244662670200, 513791607420, 1052049481860, 2104098963720, 4116715363800
Offset: 22
- T. D. Noe, Table of n, a(n) for n = 22..1000
- Matthias Beck and Serkan Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
- Milan Janjic, Two Enumerative Functions.
- Index entries for linear recurrences with constant coefficients, signature (23, -253, 1771, -8855, 33649, -100947, 245157, -490314, 817190, -1144066, 1352078, -1352078, 1144066, -817190, 490314, -245157, 100947, -33649, 8855, -1771, 253, -23, 1).
-
[ Binomial(n,22): n in [22..80]]; // Vincenzo Librandi, Mar 26 2011
-
seq(binomial(n,22),n=22..42); # Zerinvary Lajos, Aug 04 2008
-
Binomial[Range[22,50],22] (* Harvey P. Dale, Apr 02 2011 *)
-
for(n=22, 50, print1(binomial(n,22), ", ")) \\ G. C. Greubel, Nov 23 2017
A010978
a(n) = binomial(n,25).
Original entry on oeis.org
1, 26, 351, 3276, 23751, 142506, 736281, 3365856, 13884156, 52451256, 183579396, 600805296, 1852482996, 5414950296, 15084504396, 40225345056, 103077446706, 254661927156, 608359048206, 1408831480056, 3169870830126, 6943526580276, 14833897694226, 30957699535776
Offset: 25
- T. D. Noe, Table of n, a(n) for n = 25..1000
- Index entries for linear recurrences with constant coefficients, signature (26, -325, 2600, -14950, 65780, -230230, 657800, -1562275, 3124550, -5311735, 7726160, -9657700, 10400600, -9657700, 7726160, -5311735, 3124550, -1562275, 657800, -230230, 65780, -14950, 2600, -325, 26, -1).
-
[Binomial(n, 25): n in [25..50]]; // Vincenzo Librandi, Jun 12 2013
-
seq(binomial(n,25),n=25..41); # Zerinvary Lajos, Aug 18 2008
-
Table[Binomial[n,25],{n,25,50}] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2011 *)
-
x='x+O('x^50); Vec(x^25/(1-x)^26) \\ G. C. Greubel, Nov 23 2017
Comments