cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 92 results. Next

A351017 Number of binary words of length n with all distinct run-lengths.

Original entry on oeis.org

1, 2, 2, 6, 6, 10, 22, 26, 38, 54, 114, 130, 202, 266, 386, 702, 870, 1234, 1702, 2354, 3110, 5502, 6594, 9514, 12586, 17522, 22610, 31206, 48630, 60922, 83734, 111482, 149750, 196086, 261618, 336850, 514810, 631946, 862130, 1116654, 1502982, 1916530, 2555734, 3242546
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2022

Keywords

Examples

			The a(0) = 1 through a(6) = 22 words:
  {}  0   00   000   0000   00000   000000
      1   11   001   0001   00001   000001
               011   0111   00011   000011
               100   1000   00111   000100
               110   1110   01111   000110
               111   1111   10000   001000
                            11000   001110
                            11100   001111
                            11110   011000
                            11111   011100
                                    011111
                                    100000
                                    100011
                                    100111
                                    110000
                                    110001
                                    110111
                                    111001
                                    111011
                                    111100
                                    111110
                                    111111
		

Crossrefs

Using binary expansions instead of words gives A032020, ranked by A044813.
The version for partitions is A098859.
The complement is counted by twice A261982.
The version for compositions is A329739, for runs A351013.
For runs instead of run-lengths we have A351016, twice A351018.
The version for patterns is A351292, for runs A351200.
A000120 counts binary weight.
A001037 counts binary Lyndon words, necklaces A000031, aperiodic A027375.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A242882 counts compositions with distinct multiplicities.
A297770 counts distinct runs in binary expansion.
A325545 counts compositions with distinct differences.
A329767 counts binary words by runs-resistance.
A351014 counts distinct runs in standard compositions.
A351204 counts partitions where every permutation has all distinct runs.
A351290 ranks compositions with all distinct runs.

Programs

  • Mathematica
    Table[Length[Select[Tuples[{0,1},n],UnsameQ@@Length/@Split[#]&]],{n,0,10}]
  • Python
    from itertools import groupby, product
    def adrl(s):
        runlens = [len(list(g)) for k, g in groupby(s)]
        return len(runlens) == len(set(runlens))
    def a(n):
        if n == 0: return 1
        return 2*sum(adrl("1"+"".join(w)) for w in product("01", repeat=n-1))
    print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 08 2022

Formula

a(n>0) = 2 * A032020(n).

Extensions

a(25)-a(32) from Michael S. Branicky, Feb 08 2022
More terms from David A. Corneth, Feb 08 2022 using data from A032020

A383708 Number of integer partitions of n such that it is possible to choose a family of pairwise disjoint strict integer partitions, one of each part.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 5, 7, 8, 13, 14, 18, 22, 27, 36, 41, 50, 61, 73, 86
Offset: 0

Views

Author

Gus Wiseman, May 07 2025

Keywords

Comments

Also the number of integer partitions y of n whose normal multiset (in which i appears y_i times) is a Look-and-Say partition.

Examples

			For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is counted under a(6).
The a(1) = 1 through a(9) = 8 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)      (9)
            (2,1)  (3,1)  (3,2)  (3,3)    (4,3)    (4,4)    (5,4)
                          (4,1)  (4,2)    (5,2)    (5,3)    (6,3)
                                 (5,1)    (6,1)    (6,2)    (7,2)
                                 (3,2,1)  (4,2,1)  (7,1)    (8,1)
                                                   (4,3,1)  (4,3,2)
                                                   (5,2,1)  (5,3,1)
                                                            (6,2,1)
		

Crossrefs

These partitions have Heinz numbers A382913.
Without ones we have A383533, complement A383711.
The number of such families for each Heinz number is A383706.
The complement is counted by A383710, ranks A382912.
A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605).
A098859 counts partitions with distinct multiplicities, compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n], pof[#]!={}&]],{n,15}]

A351015 Smallest k such that the k-th composition in standard order has n distinct runs.

Original entry on oeis.org

0, 1, 5, 27, 155, 1655, 18039, 281975
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
It would be very interesting to have a formula or general construction for a(n). - Gus Wiseman, Feb 12 2022

Examples

			The terms together with their binary expansions and corresponding compositions begin:
       0:                    0  ()
       1:                    1  (1)
       5:                  101  (2,1)
      27:                11011  (1,2,1,1)
     155:             10011011  (3,1,2,1,1)
    1655:          11001110111  (1,3,1,1,2,1,1,1)
   18039:      100011001110111  (4,1,3,1,1,2,1,1,1)
  281975:  1000100110101110111  (4,3,1,2,2,1,1,2,1,1,1)
		

Crossrefs

The version for Heinz numbers and prime multiplicities is A006939.
Counting not necessarily distinct runs gives A113835 (up to zero).
Using binary expansions instead of standard compositions gives A350952.
These are the positions of first appearances in A351014.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
Selected statistics of standard compositions (A066099, reverse A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    s=Table[Length[Union[Split[stc[n]]]],{n,0,1000}];
    Table[Position[s,k][[1,1]]-1,{k,Union[s]}]

A383710 Number of integer partitions of n such that it is not possible to choose a family of pairwise disjoint strict integer partitions, one of each part.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 6, 10, 15, 22, 29, 42, 59, 79, 108, 140, 190, 247, 324, 417, 541
Offset: 0

Views

Author

Gus Wiseman, May 07 2025

Keywords

Comments

Also the number of integer partitions of n whose normal multiset (in which i appears y_i times) is not a Look-and-Say partition.

Examples

			For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is not counted under a(6).
The a(2) = 1 through a(8) = 15 partitions:
  (11)  (111)  (22)    (221)    (222)     (322)      (332)
               (211)   (311)    (411)     (331)      (422)
               (1111)  (2111)   (2211)    (511)      (611)
                       (11111)  (3111)    (2221)     (2222)
                                (21111)   (3211)     (3221)
                                (111111)  (4111)     (3311)
                                          (22111)    (4211)
                                          (31111)    (5111)
                                          (211111)   (22211)
                                          (1111111)  (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

These partitions have Heinz numbers A382912.
The number of such families for each Heinz number is A383706.
The complement is counted by A383708, ranks A382913.
Without ones we have A383711, complement A383533.
A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605).
A098859 counts partitions with distinct multiplicities, compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n], pof[#]=={}&]], {n,0,15}]

A351016 Number of binary words of length n with all distinct runs.

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 36, 54, 92, 154, 244, 382, 652, 994, 1572, 2414, 3884, 5810, 8996, 13406, 21148, 31194, 47508, 70086, 104844, 156738, 231044, 338998, 496300, 721042, 1064932, 1536550, 2232252, 3213338, 4628852, 6603758, 9554156, 13545314, 19354276
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2022

Keywords

Comments

These are binary words where the runs of zeros have all distinct lengths and the runs of ones also have all distinct lengths. For n > 0 this is twice the number of terms of A175413 that have n digits in binary.

Examples

			The a(0) = 1 through a(4) = 12 binary words:
  ()   0    00    000    0000
       1    01    001    0001
            10    011    0010
            11    100    0011
                  110    0100
                  111    0111
                         1000
                         1011
                         1100
                         1101
                         1110
                         1111
For example, the word (1,1,0,1) has three runs (1,1), (0), (1), which are all distinct, so is counted under a(4).
		

Crossrefs

The version for compositions is A351013, lengths A329739, ranked by A351290.
The version for [run-]lengths is A351017.
The version for expansions is A351018, lengths A032020, ranked by A175413.
The version for patterns is A351200, lengths A351292.
The version for permutations of prime factors is A351202.
A000120 counts binary weight.
A001037 counts binary Lyndon words, necklaces A000031, aperiodic A027375.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A242882 counts compositions with distinct multiplicities.
A297770 counts distinct runs in binary expansion.
A325545 counts compositions with distinct differences.
A329767 counts binary words by runs-resistance.
A351014 counts distinct runs in standard compositions.
A351204 counts partitions whose permutations all have all distinct runs.

Programs

  • Mathematica
    Table[Length[Select[Tuples[{0,1},n],UnsameQ@@Split[#]&]],{n,0,10}]
  • Python
    from itertools import groupby, product
    def adr(s):
        runs = [(k, len(list(g))) for k, g in groupby(s)]
        return len(runs) == len(set(runs))
    def a(n):
        if n == 0: return 1
        return 2*sum(adr("1"+"".join(w)) for w in product("01", repeat=n-1))
    print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 08 2022

Formula

a(n>0) = 2 * A351018(n).

Extensions

a(25)-a(32) from Michael S. Branicky, Feb 08 2022
a(33)-a(38) from David A. Corneth, Feb 08 2022

A384177 Number of subsets of {1..n} with all distinct lengths of maximal anti-runs (increasing by more than 1).

Original entry on oeis.org

1, 2, 3, 5, 10, 19, 35, 62, 109, 197, 364, 677, 1251, 2288, 4143, 7443, 13318, 23837, 42809, 77216, 139751, 253293, 458800, 829237, 1494169, 2683316, 4804083, 8580293, 15301324, 27270061, 48607667, 86696300, 154758265, 276453311, 494050894, 882923051
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2025

Keywords

Examples

			The subset {1,2,4,5,7,10} has maximal anti-runs ((1),(2,4),(5,7,10)), with lengths (1,2,3), so is counted under a(10).
The a(0) = 1 through a(5) = 19 subsets:
  {}  {}   {}   {}     {}       {}
      {1}  {1}  {1}    {1}      {1}
           {2}  {2}    {2}      {2}
                {3}    {3}      {3}
                {1,3}  {4}      {4}
                       {1,3}    {5}
                       {1,4}    {1,3}
                       {2,4}    {1,4}
                       {1,2,4}  {1,5}
                       {1,3,4}  {2,4}
                                {2,5}
                                {3,5}
                                {1,2,4}
                                {1,2,5}
                                {1,3,4}
                                {1,3,5}
                                {1,4,5}
                                {2,3,5}
                                {2,4,5}
		

Crossrefs

For runs instead of anti-runs we have A384175, complement A384176.
These subsets are ranked by A384879.
For strict partitions instead of subsets we have A384880, see A384178, A384884, A384886.
For equal instead of distinct lengths we have A384889, for runs A243815.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],UnsameQ@@Length/@Split[#,#2!=#1+1&]&]],{n,0,10}]
  • PARI
    lista(n)={my(o=(1-x^(n+1))/(1-x)*O(y*y^n),p=prod(i=1,(n+1)\2,1+o+x*y^(2*i-1)/(1-y)^(i-1)));p=subst(serlaplace(p),x,1);Vec((p-y)/(1-y)^2)} \\ Christian Sievers, Jun 18 2025

Extensions

a(21) and beyond from Christian Sievers, Jun 18 2025

A351596 Numbers k such that the k-th composition in standard order has all distinct run-lengths.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 19, 21, 23, 26, 28, 30, 31, 32, 35, 36, 39, 42, 47, 56, 60, 62, 63, 64, 67, 71, 73, 74, 79, 84, 85, 87, 95, 100, 106, 112, 119, 120, 122, 123, 124, 126, 127, 128, 131, 135, 136, 138, 143, 146, 159, 164, 168, 170, 171
Offset: 1

Views

Author

Gus Wiseman, Feb 24 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
   0:      0  ()
   1:      1  (1)
   2:     10  (2)
   3:     11  (1,1)
   4:    100  (3)
   7:    111  (1,1,1)
   8:   1000  (4)
  10:   1010  (2,2)
  11:   1011  (2,1,1)
  14:   1110  (1,1,2)
  15:   1111  (1,1,1,1)
  16:  10000  (5)
  19:  10011  (3,1,1)
  21:  10101  (2,2,1)
  23:  10111  (2,1,1,1)
		

Crossrefs

The version using binary expansions is A044813.
The version for Heinz numbers and prime multiplicities is A130091.
These compositions are counted by A329739, normal A329740.
The version for runs instead of run-lengths is A351290, counted by A351013.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct run-lengths:
- A032020 = binary expansions, for runs A351018.
- A351017 = binary words, for runs A351016.
- A351292 = patterns, for runs A351200.
Selected statistics of standard compositions (A066099, A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Length/@Split[stc[#]]&]

A357182 Number of integer compositions of n with the same length as their alternating sum.

Original entry on oeis.org

1, 1, 0, 0, 1, 3, 1, 4, 6, 20, 13, 48, 50, 175, 141, 512, 481, 1719, 1491, 5400, 4929, 17776, 15840, 57420, 52079, 188656, 169989, 617176, 559834, 2033175, 1842041, 6697744, 6085950, 22139780, 20123989, 73262232, 66697354, 242931321, 221314299, 806516560
Offset: 0

Views

Author

Gus Wiseman, Sep 28 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The a(1) = 1 through a(8) = 6 compositions:
  (1)  (31)  (113)  (42)  (124)  (53)
             (212)        (223)  (1151)
             (311)        (322)  (2141)
                          (421)  (3131)
                                 (4121)
                                 (5111)
		

Crossrefs

For product instead of length we have A114220.
For sum equal to twice alternating sum we have A262977, ranked by A348614.
For product equal to sum we have A335405, ranked by A335404.
For absolute value we have A357183.
These compositions are ranked by A357184.
The case of partitions is A357189.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A025047 counts alternating compositions, ranked by A345167.
A124754 gives alternating sums of standard compositions.
A238279 counts compositions by sum and number of maximal runs.
A261983 counts non-anti-run compositions.
A357136 counts compositions by alternating sum.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==ats[#]&]],{n,0,15}]

Extensions

a(21)-a(39) from Alois P. Heinz, Sep 29 2022

A351200 Number of patterns of length n with all distinct runs.

Original entry on oeis.org

1, 1, 3, 11, 53, 305, 2051, 15731, 135697, 1300869, 13726431, 158137851, 1975599321, 26607158781, 384347911211, 5928465081703, 97262304328573, 1691274884085061, 31073791192091251, 601539400910369671, 12238270940611270161, 261071590963047040241
Offset: 0

Views

Author

Gus Wiseman, Feb 09 2022

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.

Examples

			The a(1) = 1 through a(3) = 11 patterns:
  (1)  (1,1)  (1,1,1)
       (1,2)  (1,1,2)
       (2,1)  (1,2,2)
              (1,2,3)
              (1,3,2)
              (2,1,1)
              (2,1,3)
              (2,2,1)
              (2,3,1)
              (3,1,2)
              (3,2,1)
The complement for n = 3 counts the two patterns (1,2,1) and (2,1,2).
		

Crossrefs

The version for run-lengths instead of runs is A351292.
A000670 counts patterns, ranked by A333217.
A005649 counts anti-run patterns, complement A069321.
A005811 counts runs in binary expansion.
A032011 counts patterns with distinct multiplicities.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A060223 counts Lyndon patterns, necklaces A019536, aperiodic A296975.
A131689 counts patterns by number of distinct parts.
A238130 and A238279 count compositions by number of runs.
A297770 counts distinct runs in binary expansion.
A345194 counts alternating patterns, up/down A350354.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351202 = permutations of prime factors.
- A351642 = word structures.
Row sums of A351640.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]] /@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],UnsameQ@@Split[#]&]],{n,0,6}]
  • PARI
    \\ here LahI is A111596 as row polynomials.
    LahI(n,y)={sum(k=1, n, y^k*(-1)^(n-k)*(n!/k!)*binomial(n-1, k-1))}
    S(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); 1 + sum(i=1, (sqrtint(8*n+1)-1)\2, polcoef(p,i,y)*LahI(i,y))}
    R(q)={[subst(serlaplace(p), y, 1) | p<-Vec(q)]}
    seq(n)={my(q=S(n)); concat([1], sum(k=1, n, R(q^k-1)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 12 2022

Extensions

Terms a(10) and beyond from Andrew Howroyd, Feb 12 2022

A351290 Numbers k such that the k-th composition in standard order has all distinct runs.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50, 51, 52, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
   0:      0  ()
   1:      1  (1)
   2:     10  (2)
   3:     11  (1,1)
   4:    100  (3)
   5:    101  (2,1)
   6:    110  (1,2)
   7:    111  (1,1,1)
   8:   1000  (4)
   9:   1001  (3,1)
  10:   1010  (2,2)
  11:   1011  (2,1,1)
  12:   1100  (1,3)
  14:   1110  (1,1,2)
  15:   1111  (1,1,1,1)
		

Crossrefs

The version for Heinz numbers and prime multiplicities is A130091.
The version using binary expansions is A175413, complement A351205.
The version for run-lengths instead of runs is A329739.
These compositions are counted by A351013.
The complement is A351291.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions:
- Length is A000120.
- Parts are A066099, reverse A228351.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Split[stc[#]]&]
Previous Showing 21-30 of 92 results. Next