cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A103712 Decimal expansion of the expected distance from a randomly selected point in the unit square to its center: (sqrt(2) + log(1 + sqrt(2)))/6.

Original entry on oeis.org

3, 8, 2, 5, 9, 7, 8, 5, 8, 2, 3, 2, 1, 0, 6, 3, 4, 5, 6, 7, 2, 3, 8, 3, 0, 0, 8, 1, 9, 8, 2, 4, 8, 3, 9, 7, 9, 3, 2, 9, 7, 2, 0, 3, 3, 9, 3, 9, 7, 6, 3, 9, 1, 3, 9, 8, 8, 3, 2, 9, 2, 2, 4, 4, 4, 0, 6, 8, 4, 9, 4, 3, 7, 8, 0, 6, 8, 8, 8, 5, 4, 4, 4, 7, 3, 4, 9, 0, 7, 1, 0, 3, 9, 6, 4, 9, 6, 0, 2, 5, 9, 8, 6, 2, 5
Offset: 0

Views

Author

Sylvester Reese and Jonathan Sondow, Feb 13 2005

Keywords

Comments

Is it a coincidence that this constant is equal to 1/6 of the universal parabolic constant A103710? (Reese, 2004; Finch, 2012)
exp(d(2)) - exp(d(2))/Pi = 0.9994179247351742... ~ 1 - 1/1718. - Gerald McGarvey, Feb 21 2005
Take a point on a line of irrational slope and a line segment of a given length centered at the point, integrate the distance of a point on the line to the set of lattice points along the line segment, and divide by the length. The limit as the length approaches infinity can be shown by a generalization of the Equidistribution Theorem to give the expected distance of a point in the unit square to its corners, this constant. - Thomas Anton, Jun 19 2021

Examples

			0.38259785823210634567238300819824839793297203393976391398832922444...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, section 8.1.
  • S. Reese, A universal parabolic constant, 2004, preprint.

Crossrefs

Equal to (A002193 + A091648)/6 = (A103710)/6 = (A103711)/3.
Cf. A244921.

Programs

  • Mathematica
    RealDigits[(Sqrt[2] + Log[1 + Sqrt[2]])/6, 10, 111][[1]] (* Robert G. Wilson v, Feb 14 2005 *)
  • Maxima
    fpprec: 100$ ev(bfloat((sqrt(2) + log(1 + sqrt(2)))/6)); /* Martin Ettl, Oct 17 2012 */
    
  • PARI
    (sqrt(2) + log(1 + sqrt(2)))/6 \\ G. C. Greubel, Sep 22 2017

Formula

Equals (1/3)*Integral_{x = 0..1} sqrt(1 + x^2) dx. - Peter Bala, Feb 28 2019
Equals Integral_{x>=1} arcsinh(x)/x^4 dx. - Amiram Eldar, Jun 26 2021
Equals A244921 / 2. - Amiram Eldar, Jun 04 2023

A247674 Decimal expansion of the integral over the square [0,1]x[0,1] of sqrt(1+(x-y)^2) dx dy.

Original entry on oeis.org

1, 0, 7, 6, 6, 3, 5, 7, 3, 2, 8, 9, 5, 1, 7, 8, 0, 0, 8, 9, 6, 5, 3, 7, 9, 7, 5, 0, 2, 4, 3, 2, 2, 6, 2, 8, 2, 8, 3, 8, 2, 6, 9, 7, 0, 3, 1, 3, 5, 9, 8, 6, 0, 5, 3, 0, 2, 7, 7, 3, 5, 6, 9, 5, 9, 8, 9, 7, 9, 9, 6, 9, 1, 4, 0, 1, 3, 2, 3, 7, 4, 1, 5, 5, 0, 2, 4, 4, 3, 8, 0, 4, 6, 7, 7, 0, 8, 8, 5, 1, 9, 4, 5
Offset: 1

Views

Author

Jean-François Alcover, Sep 22 2014

Keywords

Comments

The average length of chords in a unit square drawn between two points uniformly and independently chosen at random on two opposite sides. - Amiram Eldar, Aug 08 2020

Examples

			1.076635732895178008965379750243226282838269703135986...
		

Crossrefs

Cf. A244921.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (2 + Sqrt(2) + 5*Log(1+Sqrt(2)))/3; // G. C. Greubel, Aug 31 2018
  • Mathematica
    RealDigits[2/3 - Sqrt[2]/3 + ArcSinh[1], 10, 103] // First
  • PARI
    default(realprecision, 100); (2 + sqrt(2) + 5*log(1+sqrt(2)))/3 \\ G. C. Greubel, Aug 31 2018
    

Formula

Equals 2/3 - sqrt(2)/3 + arcsinh(1).
Equals 2*A244921 + A247674 = (2 + sqrt(2) + 5*log(1+sqrt(2)))/3.

A247685 Decimal expansion of the integral over the square (0,1)x(0,1) of 1/((x+y)*sqrt((1-x)*(1-y))) dx dy.

Original entry on oeis.org

3, 6, 6, 3, 8, 6, 2, 3, 7, 6, 7, 0, 8, 8, 7, 6, 0, 6, 0, 2, 1, 8, 4, 1, 4, 0, 5, 9, 7, 2, 9, 5, 3, 6, 4, 4, 3, 0, 9, 6, 5, 9, 7, 4, 9, 7, 1, 2, 6, 6, 8, 8, 5, 3, 7, 0, 6, 5, 9, 9, 2, 4, 7, 8, 4, 8, 7, 0, 5, 2, 0, 7, 9, 1, 0, 5, 0, 1, 9, 0, 7, 7, 9, 1, 7, 4, 2, 6, 0, 5, 1, 7, 0, 4, 4, 6, 0, 4, 2, 4, 9, 9, 4
Offset: 1

Views

Author

Jean-François Alcover, Sep 22 2014

Keywords

Comments

Also hyperbolic volume of the Whitehead link complement and (-2,3,8) pretzel link complement. This is the minimal volume attainable by a two-cusped orientable hyperbolic 3-manifold. - Jeremy Tan, Nov 17 2016

Examples

			3.663862376708876060218414059729536443096597497126688537...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 4*Catalan(R); // G. C. Greubel, Aug 25 2018
  • Maple
    evalf(4*Catalan, 130);  # Alois P. Heinz, Aug 14 2023
  • Mathematica
    RealDigits[4*Catalan, 10, 103] // First
  • PARI
    default(realprecision, 100); 4*Catalan \\ G. C. Greubel, Aug 25 2018
    
  • PARI
    lerchphi(-1, 2, 1/2) \\ Charles R Greathouse IV, Jan 30 2025
    
  • PARI
    sumalt(k=0, (-1)^k/(k+1/2)^2) \\ Charles R Greathouse IV, Jan 30 2025
    

Formula

Equals 4*Catalan.
Equals Integral_{x=0..Pi/2} log((1+cos(x))/(1-cos(x))) dx = Integral_{x=0..Pi/2} log((1+sin(x))/(1-sin(x))) dx. - Amiram Eldar, Apr 07 2022
From Amiram Eldar, Aug 14 2023: (Start)
Equals Phi(-1, 2, 1/2) = Sum_{k>=0} (-1)^k/(k+1/2)^2, where Phi is the Lerch transcendent.
Equals Integral_{x=-Pi/2..Pi/2} x/sin(x) dx. (End)

A130590 Decimal expansion of the mean Euclidean distance from a point in the unit 3D cube to a given vertex of the cube.

Original entry on oeis.org

9, 6, 0, 5, 9, 1, 9, 5, 6, 4, 5, 5, 0, 5, 2, 9, 5, 9, 4, 2, 5, 1, 0, 7, 9, 5, 1, 3, 9, 3, 8, 0, 6, 3, 6, 0, 2, 4, 0, 9, 7, 6, 9, 0, 7, 5, 4, 5, 7, 2, 3, 9, 8, 7, 6, 9, 0, 8, 9, 8, 5, 1, 5, 3, 1, 0, 3, 8, 7, 6, 6, 3, 3, 4, 0, 1, 6, 3, 2, 8, 9, 0, 3, 1, 2, 2, 7, 9, 3, 5, 6, 9, 1, 7, 7, 4, 8, 2, 4, 5, 3, 1, 2, 1, 6
Offset: 0

Views

Author

R. J. Mathar, Aug 10 2007

Keywords

Examples

			0.960591956455052959425107951...
		

Crossrefs

Analogous constants: A244921 (square), A254979 (4-cube).

Programs

  • Maple
    evalf( sqrt(3)/4+log(2+sqrt(3))/2-Pi/24);
  • Mathematica
    RealDigits[Sqrt[3]/4 + Log[2+Sqrt[3]]/2 - Pi/24, 10, 120][[1]] (* Amiram Eldar, Jun 04 2023 *)

Formula

Equals sqrt(3)/4 + log(2+sqrt(3))/2 - Pi/24 = A010527/2 + A065914/2 - A019691.
Equals 2 * A135691. - Amiram Eldar, Jun 04 2023

Extensions

Name corrected by Amiram Eldar, Jun 04 2023

A247675 Decimal expansion of the integral over the square [-1,1]x[-1,1] of 1/sqrt(1+x^2+y^2) dx dy.

Original entry on oeis.org

3, 1, 7, 3, 4, 3, 6, 4, 8, 5, 3, 0, 6, 0, 7, 1, 3, 4, 2, 1, 9, 1, 7, 5, 6, 4, 6, 7, 0, 4, 5, 5, 3, 8, 5, 1, 9, 9, 7, 6, 4, 8, 1, 6, 1, 9, 6, 1, 9, 9, 9, 5, 3, 7, 1, 7, 5, 7, 2, 5, 9, 2, 9, 9, 4, 7, 6, 6, 2, 9, 8, 0, 4, 1, 4, 1, 6, 3, 6, 5, 7, 1, 8, 7, 8, 1, 8, 6, 1, 7, 0, 2, 3, 8, 9, 9, 5, 7, 5, 5, 5, 7, 1
Offset: 1

Views

Author

Jean-François Alcover, Sep 22 2014

Keywords

Examples

			3.17343648530607134219175646704553851997648161961999537...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 4*Log(2 + Sqrt(3)) - 2*Pi(R)/3; // G. C. Greubel, Aug 31 2018
  • Mathematica
    RealDigits[4*Log[2 + Sqrt[3]] - 2*Pi/3, 10, 103] // First
  • PARI
    default(realprecision, 100); 4*log(2 + sqrt(3)) - 2*Pi/3 \\ G. C. Greubel, Aug 31 2018
    

Formula

Equals 4*log(2 + sqrt(3)) - 2*Pi/3.

A254979 Decimal expansion of the mean Euclidean distance from a point in a unit 4D cube to a given vertex of the cube (named B_4(1) in Bailey's paper).

Original entry on oeis.org

1, 1, 2, 1, 8, 9, 9, 6, 1, 8, 7, 1, 5, 8, 6, 0, 9, 7, 7, 3, 5, 1, 6, 1, 5, 1, 7, 5, 5, 6, 7, 5, 4, 2, 7, 0, 9, 2, 0, 0, 8, 0, 7, 9, 5, 6, 4, 3, 9, 5, 4, 5, 8, 3, 0, 8, 3, 6, 7, 9, 2, 4, 6, 6, 9, 1, 6, 4, 0, 3, 5, 4, 8, 6, 0, 6, 9, 1, 5, 3, 4, 9, 0, 2, 4, 6, 7, 3, 1, 4, 5, 5, 7, 8, 6, 3, 7, 6, 4, 4, 9, 7, 6, 3, 4
Offset: 1

Views

Author

Jean-François Alcover, Feb 11 2015

Keywords

Comments

Also, decimal expansion of twice the expected distance from a randomly selected point in the unit 4D cube to the center. - Amiram Eldar, Jun 04 2023

Examples

			1.12189961871586097735161517556754270920080795643954583...
		

Crossrefs

Analogous constants: A244921 (square), A130590 (cube).

Programs

  • Mathematica
    Ti2[x_] := (I/2)*(PolyLog[2, -I*x] - PolyLog[2, I*x]); B4[1] = 2/5 - Catalan/10 + (3/10)*Ti2[3 - 2*Sqrt[2]] + Log[3] - (7*Sqrt[2]/10)*ArcTan[1/Sqrt[8]] // Re; RealDigits[B4[1], 10, 105] // First
    N[Integrate[1/u^2 - Pi^2*Erf[u]^4/(16*u^6), {u, 0, Infinity}]/Sqrt[Pi], 50] (* Vaclav Kotesovec, Aug 13 2019 *)
  • Python
    from mpmath import *
    mp.dps=106
    x=3 - 2*sqrt(2)
    Ti2x=(j/2)*(polylog(2, -j*x) - polylog(2, j*x))
    C = 2/5 - catalan/10 + (3/10)*Ti2x + log(3) - (7*sqrt(2)/10)*atan(1/sqrt(8))
    print([int(n) for n in str(C.real).replace('.', '')]) # Indranil Ghosh, Jul 04 2017

Formula

Equals B_4(1) = 2/5 - Catalan/10 + (3/10)*Ti_2(3-2*sqrt(2)) + log(3) - (7*sqrt(2)/10) * arctan(1/sqrt(8)), where Ti_2(x) = (i/2)*(polylog(2, -i*x) - polylog(2, i*x)) (Ti_2 is the inverse tangent integral function).

Extensions

Name corrected by Amiram Eldar, Jun 04 2023

A244922 Decimal expansion of the integral over the square [0,1]x[0,1] of (x^2 + y^2)^(3/2) dx dy.

Original entry on oeis.org

6, 2, 7, 1, 8, 0, 7, 8, 4, 8, 8, 3, 5, 1, 4, 7, 2, 0, 8, 6, 5, 4, 8, 2, 4, 5, 2, 2, 2, 0, 3, 6, 3, 1, 7, 3, 8, 5, 3, 6, 0, 9, 2, 0, 5, 6, 2, 1, 1, 7, 7, 1, 3, 7, 2, 2, 4, 8, 3, 2, 2, 4, 9, 5, 9, 4, 7, 6, 2, 9, 4, 5, 0, 9, 5, 0, 4, 1, 3, 7, 6, 7, 7, 2, 6, 9, 1, 6, 7, 0, 8, 0, 1, 2, 1, 2, 9, 5, 6, 8, 8, 5, 7, 6, 5, 8
Offset: 0

Views

Author

Jean-François Alcover, Jul 08 2014

Keywords

Examples

			0.627180784883514720865482452220363173853609205621177137224832249594762945...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[7/20*Sqrt[2] + 3/20*Log[1 + Sqrt[2]], 10, 106] // First

Formula

7/20*sqrt(2) + 3/20*log(1 + sqrt(2)).
Also equals (7*sqrt(2) + 3*arcsinh(1))/20.

A247677 Decimal expansion of the integral over the square [0,Pi]x[0,Pi] of log(2-cos(x)-cos(y)) dx dy.

Original entry on oeis.org

4, 6, 6, 9, 2, 7, 4, 6, 6, 2, 5, 7, 5, 5, 2, 8, 0, 6, 2, 2, 6, 2, 8, 4, 1, 5, 1, 2, 1, 3, 2, 0, 9, 5, 1, 2, 9, 1, 5, 9, 6, 3, 8, 5, 5, 2, 0, 2, 2, 8, 0, 2, 7, 8, 7, 7, 2, 4, 6, 5, 1, 3, 6, 0, 1, 0, 2, 3, 2, 8, 5, 1, 8, 6, 4, 4, 3, 9, 5, 0, 4, 3, 3, 0, 9, 4, 7, 5, 1, 5, 5, 0, 3, 8, 9, 1, 5, 9, 4, 2, 3, 7, 6, 5
Offset: 1

Views

Author

Jean-François Alcover, Sep 22 2014

Keywords

Examples

			4.6692746625755280622628415121320951291596385520228...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 4*Pi(R)*Catalan(R) - Pi(R)^2*Log(2); // G. C. Greubel, Aug 31 2018
  • Mathematica
    RealDigits[4*Pi*Catalan - Pi^2*Log[2], 10, 104] // First
  • PARI
    4*Pi*Catalan - Pi^2*log(2) \\ Michel Marcus, Sep 22 2014
    

Formula

Equals 4*Pi*Catalan - Pi^2*log(2).

A355183 Decimal expansion of the area of the region that represents the set of points in a unit square that are closer to the center of the square than to the closest edge.

Original entry on oeis.org

2, 1, 8, 9, 5, 1, 4, 1, 6, 4, 9, 7, 4, 6, 0, 0, 6, 5, 0, 6, 8, 9, 1, 8, 2, 9, 8, 9, 4, 6, 2, 6, 4, 1, 0, 4, 7, 5, 9, 5, 6, 2, 5, 0, 0, 5, 0, 2, 5, 9, 7, 4, 3, 0, 9, 0, 2, 2, 3, 9, 6, 5, 0, 6, 5, 4, 3, 0, 9, 9, 7, 1, 2, 8, 2, 8, 0, 9, 3, 8, 5, 1, 3, 3, 8, 5, 0, 0, 4, 5, 7, 7, 0, 1, 8, 8, 7, 6, 3, 6, 4, 6, 6, 8, 5
Offset: 0

Views

Author

Amiram Eldar, Jun 23 2022

Keywords

Comments

The shape is formed by the intersection of four parabolas. Its perimeter is given in A355184.

Examples

			0.21895141649746006506891829894626410475956250050259...
		

References

  • Kiran S. Kedlaya, Bjorn Poonen, and Ravi Vakil, The William Lowell Putnam Mathematical Competition 1985-2000: Problems, Solutions, and Commentary, The Mathematical Association of America, 2002, pp. 108-109.

Crossrefs

Cf. A021058, A103712, A244921, A254140, A352453, A355184 (perimeter), A355185 (3D analog).

Programs

  • Mathematica
    RealDigits[(4*Sqrt[2] - 5)/3, 10, 100][[1]]

Formula

Equals (4*sqrt(2)-5)/3.

A247684 Decimal expansion of the integral over the first quadrant (x>0, y>0) of sqrt(x^2 + x*y + y^2)*exp(-x-y) dx dy.

Original entry on oeis.org

1, 8, 2, 3, 9, 5, 9, 2, 1, 6, 5, 0, 1, 0, 8, 2, 2, 6, 8, 5, 4, 6, 4, 3, 3, 9, 2, 7, 6, 9, 1, 8, 9, 4, 2, 7, 8, 4, 8, 5, 6, 1, 7, 9, 1, 8, 3, 6, 7, 0, 6, 2, 0, 8, 8, 8, 0, 1, 0, 2, 0, 7, 5, 0, 2, 2, 8, 1, 2, 0, 7, 1, 9, 9, 1, 3, 9, 5, 6, 7, 2, 5, 1, 5, 5, 2, 1, 1, 8, 1, 6, 1, 1, 0, 2, 9, 9, 0, 6, 6, 5, 9
Offset: 1

Views

Author

Jean-François Alcover, Sep 22 2014

Keywords

Examples

			1.8239592165010822685464339276918942784856179183670620888...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (4 + 3*Log(3))/4; // G. C. Greubel, Sep 07 2018
  • Mathematica
    RealDigits[1 + (3/4)*Log[3], 10, 102] // First
  • PARI
    default(realprecision, 100); (4 + 3*log(3))/4 \\ G. C. Greubel, Sep 07 2018
    

Formula

Equals 1 + (3/4)*log(3).
Showing 1-10 of 16 results. Next