cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A076900 Expansion of e.g.f.: 1/Product_{m>0} (1-x^m/(m-1)!).

Original entry on oeis.org

1, 1, 4, 15, 88, 505, 4056, 31549, 311816, 3083049, 36343720, 431215741, 5937234348, 82236865165, 1291252453050, 20477737537755, 361495828272496, 6449450737736065, 126566562342343176, 2509520619696338269, 54179963857121953460, 1182248224137860933781
Offset: 0

Views

Author

Vladeta Jovovic, Nov 26 2002

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, b(n-i, i)*binomial(n, i)*i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 11 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i-1] + If[i > n, 0, b[n-i, i] Binomial[n, i] i]]];
    a[n_] := b[n, n];
    a /@ Range[0, 30] (* Jean-François Alcover, Nov 03 2020, after Alois P. Heinz *)

Formula

E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*((j - 1)!)^k)). - Ilya Gutkovskiy, Sep 13 2018
a(n) ~ c * n * n!, where c = A247551/2. - Vaclav Kotesovec, Sep 13 2018

A266518 Number of ordered partitions of a 2n-set with nondecreasing block sizes and maximal block size equal to n.

Original entry on oeis.org

1, 2, 18, 200, 3290, 61992, 1480248, 39402792, 1229123610, 42349478600, 1640551617848, 69364811821032, 3222214209737432, 161656803984848200, 8772238289222220600, 509677254444910662000, 31677425399312755814970, 2092539622373193784503240
Offset: 0

Views

Author

Alois P. Heinz, Dec 30 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, binomial(n, i)*b(n-i, i))))
        end:
    a:= n-> `if`(n=0, 1, b(2*n, n)-b(2*n, n-1)):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, Binomial[n, i]*b[n-i, i]]]]; a[n_] := If[n==0, 1, b[2n, n] - b[2n, n-1]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)

Formula

a(n) = (2n)! * [x^n] Product_{i=1..n} (i-1)!/(i!-x^i).
a(n) = A262071(2n,n).
a(n) ~ c * 2^(2*n+1/2) * n^n / exp(n), where c = A247551 = 2.529477472079152648... . - Vaclav Kotesovec, Jan 02 2016
a(n) = A327801(2n,n). - Alois P. Heinz, Sep 26 2019

A292796 Number of sets of nonempty words with a total of n letters over n-ary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.

Original entry on oeis.org

1, 1, 3, 13, 60, 326, 2065, 14508, 116845, 1039459, 10339365, 112376487, 1339665295, 17256611005, 240193792120, 3578746993871, 56986570945387, 963868021665359, 17281651020455445, 327058650473873893, 6519981694119182165, 136489249161324882063
Offset: 0

Views

Author

Alois P. Heinz, Sep 23 2017

Keywords

Examples

			a(0) = 1: {}.
a(1) = 1: {a}.
a(2) = 3: {aa}, {ab}, {ba}.
a(3) = 13: {aaa}, {aab}, {aba}, {baa}, {abc}, {acb}, {bac}, {bca}, {cab}, {cba}, {aa,a}, {ab,a}, {ba,a}.
		

Crossrefs

Main diagonal of A292795.
Row sums of A319498.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(t=1, 1/n!,
          add(b(n-j, j, t-1)/j!, j=i..n/t))
        end:
    g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)):
    h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(h(n-i*j, i-1, k)*binomial(g(i, k), j), j=0..n/i)))
        end:
    a:= n-> h(n$3):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]];
    g[n_, k_] := If[k == 0, If[n == 0, 1, 0], n!*b[n, 0, k]];
    h[n_, i_, k_] := h[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[h[n - i*j, i - 1, k]*Binomial[g[i, k], j], {j, 0, n/i}]]];
    a[n_] := h[n, n, n];
    a /@ Range[0, 30] (* Jean-François Alcover, Jan 02 2021, after Alois P. Heinz *)

Formula

a(n) = [x^n] Product_{j=1..n} (1+x^j)^A226873(j,n).
a(n) = A292795(n,n).
a(n) ~ c * n!, where c = A247551 = 2.529477472079152648... - Vaclav Kotesovec, Sep 28 2017

A335643 Expansion of e.g.f. Product_{k>0} 1/(1 - tan(x)^k / k!).

Original entry on oeis.org

1, 1, 3, 12, 71, 462, 3890, 35133, 381583, 4411870, 58623990, 826335675, 12990713482, 216027857567, 3925135187017, 75217607162053, 1552186877466271, 33678081631793270, 778592124168964502, 18867293553102673343, 483291402186818709310, 12937553749692179771301, 363847628395565829224327
Offset: 0

Views

Author

Seiichi Manyama, Oct 03 2020

Keywords

Crossrefs

Programs

  • Mathematica
    max = 22; Range[0, max]! * CoefficientList[Series[Product[1/(1 - Tan[x]^k/k!), {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Oct 04 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, 1-tan(x)^k/k!)))
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(i=1, N, sum(j=1, N\i, tan(x)^(i*j)/(i*j!^i))))))

Formula

E.g.f.: exp( Sum_{i>0} Sum_{j>0} tan(x)^(i*j)/(i*(j!)^i) ).
a(n) ~ A247551 * 2^(2*n+1) * n! / Pi^(n+1). - Vaclav Kotesovec, Oct 04 2020

A327827 Sum of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts incorporating 1.

Original entry on oeis.org

0, 1, 2, 9, 40, 235, 1476, 11214, 91848, 859527, 8710300, 97675138, 1179954612, 15490520786, 217602374458, 3280028076615, 52571985879600, 895913825750191, 16140560853800556, 307048409240931810, 6143666813617775100, 129096480664676773542, 2840750997343361802150
Offset: 0

Views

Author

Alois P. Heinz, Sep 26 2019

Keywords

Crossrefs

Column k=1 of A327801.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
         `if`(i>n, 0, b(n, i+1, `if`(i=k, 0, k))+
         `if`(i=k, 0, b(n-i, i, k)*binomial(n, i))))
        end:
    a:= n-> b(n, 1, 0)-b(n, 1$2):
    seq(a(n), n=0..23);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 2, 0, b[n, i - 1, If[i == k, 0, k]]] + If[i == k, 0, b[n - i, Min[n - i, i], k]/i!]];
    T[n_, k_] := n! (b[n, n, 0] - If[k == 0, 0, b[n, n, k]]);
    a[n_] := T[n, 1];
    a /@ Range[0, 23] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * n!, where c = A247551 = 2.5294774720791526481801161542539542411787... - Vaclav Kotesovec, Sep 28 2019

A370413 Decimal expansion of Product_{k>=2} 1 / (1 - 1/k!!).

Original entry on oeis.org

3, 8, 0, 3, 0, 8, 9, 1, 5, 2, 3, 7, 5, 6, 2, 0, 1, 4, 0, 5, 8, 2, 5, 7, 4, 4, 9, 6, 8, 5, 4, 9, 9, 0, 0, 3, 8, 4, 5, 9, 0, 7, 4, 4, 4, 2, 7, 1, 3, 8, 2, 2, 1, 7, 1, 6, 5, 5, 9, 2, 8, 3, 2, 4, 5, 3, 8, 3, 2, 4, 2, 4, 6, 0, 3, 6, 5, 2, 1, 5, 6, 9, 6, 6, 3, 7, 7, 3, 0, 8, 9, 8, 8, 6, 7, 1, 3, 6, 7, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 30 2024

Keywords

Examples

			3.803089152375620140582574496854990038459...
		

Crossrefs

A327828 Sum of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts incorporating 2.

Original entry on oeis.org

0, 0, 1, 3, 18, 100, 705, 5166, 44856, 413316, 4297635, 47906650, 586050828, 7669704978, 108433645502, 1632017808435, 26240224612920, 446861879976600, 8063224431751719, 153335328111105282, 3070484092409318100, 64508501542986638550, 1420061287311444508962
Offset: 0

Views

Author

Alois P. Heinz, Sep 26 2019

Keywords

Crossrefs

Column k=2 of A327801.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
         `if`(i>n, 0, b(n, i+1, `if`(i=k, 0, k))+
         `if`(i=k, 0, b(n-i, i, k)*binomial(n, i))))
        end:
    a:= n-> b(n, 1, 0)-b(n, 1, 2):
    seq(a(n), n=0..23);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i > n, 0, b[n, i + 1, If[i == k, 0, k]] + If[i == k, 0, b[n - i, i, k] Binomial[n, i]]]];
    a[n_] := b[n, 1, 0] - b[n, 1, 2];
    a /@ Range[0, 23] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * n!, where c = A247551/2 = 1.26473873603957632409005807712697712... - Vaclav Kotesovec, Sep 28 2019

A330649 E.g.f.: Product_{k>=1} 1 / (1 - x^k/(k!*(1 - x)^k)).

Original entry on oeis.org

1, 1, 5, 34, 299, 3226, 41202, 607545, 10153831, 189628750, 3913009178, 88406043991, 2170372901534, 57531498837515, 1637713270797411, 49830222530823615, 1613950394999111903, 55444724259894089718, 2013760368429942861810, 77105255895256112519259
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 13 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[Product[1/(1 - x^k/(k! (1 - x)^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n - 1, k - 1] Total[Apply[Multinomial, IntegerPartitions[k], {1}]] n!/k!, {k, 0, n}], {n, 0, 19}]
  • PARI
    seq(n)={Vec(serlaplace(prod(k=1, n, 1 / (1 - x^k/(k!*(1 - x)^k)) + O(x*x^n))))} \\ Andrew Howroyd, Feb 13 2020

Formula

a(n) = Sum_{k=0..n} binomial(n-1,k-1) * A005651(k) * n! / k!.
a(n) ~ c * 2^(n-1) * n!, where c = A247551 = 2.52947747207915264818... - Vaclav Kotesovec, Feb 16 2020

A370465 Decimal expansion of Product_{k>=2} 1 / (1 - 1/(2*k-1)!!).

Original entry on oeis.org

1, 6, 2, 4, 4, 8, 4, 1, 5, 2, 3, 4, 5, 4, 5, 5, 8, 4, 2, 4, 5, 0, 8, 8, 2, 1, 6, 9, 9, 7, 9, 7, 2, 3, 7, 4, 9, 9, 0, 1, 9, 4, 5, 7, 1, 0, 0, 5, 3, 5, 6, 6, 7, 3, 9, 3, 3, 3, 0, 9, 9, 1, 4, 8, 0, 8, 7, 1, 6, 2, 2, 7, 9, 1, 4, 4, 9, 7, 0, 6, 6, 5, 5, 3, 7, 8, 7, 4, 0, 8, 3, 5, 2, 3, 7, 6, 5, 8, 8, 9
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 30 2024

Keywords

Examples

			1.6244841523454558424508821699797237499...
		

Crossrefs

A371312 Expansion of e.g.f. Product_{k>=1} 1 / (1 - x^k/k!)^2.

Original entry on oeis.org

1, 2, 8, 38, 228, 1562, 12386, 109286, 1073988, 11545994, 135393438, 1714890806, 23380747506, 341014477390, 5303722839850, 87582446980418, 1531259993710468, 28254163132485930, 548854481037814382, 11196310379931318758, 239346426732701009838, 5350768890908294837294
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 24 2024

Keywords

Comments

Exponential self-convolution of A005651.

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Product[1/(1 - x^k/k!)^2, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * A005651(k) * A005651(n-k).
a(n) ~ A247551^2 * n! * n. - Vaclav Kotesovec, Mar 24 2024
Previous Showing 11-20 of 21 results. Next