cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 75 results. Next

A342524 Heinz numbers of integer partitions with strictly increasing first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 84 are {1,1,2,4}, with first quotients (1,2,2), so 84 is not in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
    8: {1,1,1}
   16: {1,1,1,1}
   18: {1,2,2}
   24: {1,1,1,2}
   27: {2,2,2}
   30: {1,2,3}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   48: {1,1,1,1,2}
   50: {1,3,3}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
		

Crossrefs

For differences instead of quotients we have A325456 (count: A240027).
For multiplicities (prime signature) instead of quotients we have A334965.
The version counting strict divisor chains is A342086.
These partitions are counted by A342498 (strict: A342517, ordered: A342493).
The weakly increasing version is A342523.
The strictly decreasing version is A342525.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.
A342098 counts (strict) partitions with all adjacent parts x > 2y.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Less@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]

A342525 Heinz numbers of integer partitions with strictly decreasing first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 150 are {1,2,3,3}, with first quotients (2,3/2,1), so 150 is in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   20: {1,1,3}
   24: {1,1,1,2}
   27: {2,2,2}
   28: {1,1,4}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
		

Crossrefs

For multiplicities (prime signature) instead of quotients we have A304686.
For differences instead of quotients we have A325457 (count: A320470).
The version counting strict divisor chains is A342086.
These partitions are counted by A342499 (strict: A342518, ordered: A342494).
The strictly increasing version is A342524.
The weakly decreasing version is A342526.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.
A342098 counts (strict) partitions with all adjacent parts x > 2y.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Greater@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]

A343935 Number of ways to choose a multiset of n divisors of n.

Original entry on oeis.org

1, 3, 4, 15, 6, 84, 8, 165, 55, 286, 12, 6188, 14, 680, 816, 4845, 18, 33649, 20, 53130, 2024, 2300, 24, 2629575, 351, 3654, 4060, 237336, 30, 10295472, 32, 435897, 7140, 7770, 8436, 177232627, 38, 10660, 11480, 62891499, 42, 85900584, 44, 1906884, 2118760
Offset: 1

Views

Author

Gus Wiseman, May 05 2021

Keywords

Examples

			The a(1) = 1 through a(5) = 6 multisets:
  {1}  {1,1}  {1,1,1}  {1,1,1,1}  {1,1,1,1,1}
       {1,2}  {1,1,3}  {1,1,1,2}  {1,1,1,1,5}
       {2,2}  {1,3,3}  {1,1,1,4}  {1,1,1,5,5}
              {3,3,3}  {1,1,2,2}  {1,1,5,5,5}
                       {1,1,2,4}  {1,5,5,5,5}
                       {1,1,4,4}  {5,5,5,5,5}
                       {1,2,2,2}
                       {1,2,2,4}
                       {1,2,4,4}
                       {1,4,4,4}
                       {2,2,2,2}
                       {2,2,2,4}
                       {2,2,4,4}
                       {2,4,4,4}
                       {4,4,4,4}
		

Crossrefs

Diagonal n = k of A343658.
Choosing n divisors of n - 1 gives A343936.
The version for chains of divisors is A343939.
A000005 counts divisors.
A000312 = n^n.
A007318 counts k-sets of elements of {1..n}.
A009998 = n^k (as an array, offset 1).
A059481 counts k-multisets of elements of {1..n}.
A146291 counts divisors of n with k prime factors (with multiplicity).
A253249 counts nonempty chains of divisors of n.
Strict chains of divisors:
- A067824 counts strict chains of divisors starting with n.
- A074206 counts strict chains of divisors from n to 1.
- A251683 counts strict length k + 1 chains of divisors from n to 1.
- A334996 counts strict length-k chains of divisors from n to 1.
- A337255 counts strict length-k chains of divisors starting with n.
- A337256 counts strict chains of divisors of n.
- A343662 counts strict length-k chains of divisors.

Programs

  • Mathematica
    multchoo[n_,k_]:=Binomial[n+k-1,k];
    Table[multchoo[DivisorSigma[0,n],n],{n,25}]
  • Python
    from math import comb
    from sympy import divisor_count
    def A343935(n): return comb(divisor_count(n)+n-1,n) # Chai Wah Wu, Jul 05 2024

Formula

a(n) = ((sigma(n), n)) = binomial(sigma(n) + n - 1, n) where sigma = A000005 and binomial = A007318.

A124433 Irregular array {a(n,m)} read by rows where (sum{n>=1} sum{m=1 to A001222(n)+1} a(n,m)*y^m/n^x) = 1/(zeta(x)-1+1/y) for all x and y where the double sum converges.

Original entry on oeis.org

1, 0, -1, 0, -1, 0, -1, 1, 0, -1, 0, -1, 2, 0, -1, 0, -1, 2, -1, 0, -1, 1, 0, -1, 2, 0, -1, 0, -1, 4, -3, 0, -1, 0, -1, 2, 0, -1, 2, 0, -1, 3, -3, 1, 0, -1, 0, -1, 4, -3, 0, -1, 0, -1, 4, -3, 0, -1, 2, 0, -1, 2, 0, -1, 0, -1, 6, -9, 4, 0, -1, 1, 0, -1, 2, 0, -1, 2, -1, 0, -1, 4, -3, 0, -1, 0, -1, 6, -6, 0, -1, 0, -1, 4, -6, 4, -1, 0, -1, 2, 0, -1, 2, 0, -1
Offset: 1

Views

Author

Leroy Quet, Dec 15 2006

Keywords

Comments

Row n has A001222(n)+1 terms. The polynomial P_n(y) = (sum{m=1 to A001222(n)+1} a(n,m)*y^m) is a generalization of the Mobius (Moebius) function, where P_n(1) = A008683(n).
From Gus Wiseman, Aug 24 2020: (Start)
Up to sign, also the number of strict length-k chains of divisors from n to 1, 1 <= k <= 1 + A001222(n). For example, row n = 36 counts the following chains (empty column indicated by dot):
. 36/1 36/2/1 36/4/2/1 36/12/4/2/1
36/3/1 36/6/2/1 36/12/6/2/1
36/4/1 36/6/3/1 36/12/6/3/1
36/6/1 36/9/3/1 36/18/6/2/1
36/9/1 36/12/2/1 36/18/6/3/1
36/12/1 36/12/3/1 36/18/9/3/1
36/18/1 36/12/4/1
36/12/6/1
36/18/2/1
36/18/3/1
36/18/6/1
36/18/9/1
(End)

Examples

			1/(zeta(x) - 1 + 1/y) = y - y^2/2^x - y^2/3^x + ( - y^2 + y^3)/4^x - y^2/5^x + ( - y^2 + 2y^3)/6^x - y^2/7^x + ...
From _Gus Wiseman_, Aug 24 2020: (Start)
The sequence of rows begins:
     1: 1              16: 0 -1 3 -3 1     31: 0 -1
     2: 0 -1           17: 0 -1            32: 0 -1 4 -6 4 -1
     3: 0 -1           18: 0 -1 4 -3       33: 0 -1 2
     4: 0 -1 1         19: 0 -1            34: 0 -1 2
     5: 0 -1           20: 0 -1 4 -3       35: 0 -1 2
     6: 0 -1 2         21: 0 -1 2          36: 0 -1 7 -12 6
     7: 0 -1           22: 0 -1 2          37: 0 -1
     8: 0 -1 2 -1      23: 0 -1            38: 0 -1 2
     9: 0 -1 1         24: 0 -1 6 -9 4     39: 0 -1 2
    10: 0 -1 2         25: 0 -1 1          40: 0 -1 6 -9 4
    11: 0 -1           26: 0 -1 2          41: 0 -1
    12: 0 -1 4 -3      27: 0 -1 2 -1       42: 0 -1 6 -6
    13: 0 -1           28: 0 -1 4 -3       43: 0 -1
    14: 0 -1 2         29: 0 -1            44: 0 -1 4 -3
    15: 0 -1 2         30: 0 -1 6 -6       45: 0 -1 4 -3
(End)
		

Crossrefs

A008480 gives rows ends (up to sign).
A008683 gives row sums (the Moebius function).
A073093 gives row lengths.
A074206 gives unsigned row sums.
A097805 is the restriction to powers of 2 (up to sign).
A251683 is the unsigned version with zeros removed.
A334996 is the unsigned version (except with a(1) = 0).
A334997 is an unsigned non-strict version.
A337107 is the restriction to factorial numbers.
A001055 counts factorizations.
A001222 counts prime factors with multiplicity.
A067824 counts strict chains of divisors starting with n.
A074206 counts strict chains of divisors from n to 1.
A122651 counts strict chains of divisors summing to n.
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts strict chains of divisors.
A337105 counts strict chains of divisors from n! to 1.

Programs

  • Mathematica
    f[l_List] := Block[{n = Length[l] + 1, c},c = Plus @@ Last /@ FactorInteger[n];Append[l, Prepend[ -Plus @@ Pick[PadRight[ #, c] & /@ l, Mod[n, Range[n - 1]], 0],0]]];Nest[f, {{1}}, 34] // Flatten(* Ray Chandler, Feb 13 2007 *)
    chnsc[n_]:=If[n==1,{{}},Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,DeleteCases[Divisors[n],1|n]}],{n}]];
    Table[(-1)^k*Length[Select[chnsc[n],Length[#]==k&]],{n,30},{k,0,PrimeOmega[n]}] (* Gus Wiseman, Aug 24 2020 *)

Formula

a(1,1)=1. a(n,1) = 0 for n>=2. a(n,m+1) = -sum{k|n,k < n} a(k,m), where, for the purpose of this sum, a(k,m) = 0 if m > A001222(k)+1.

Extensions

Extended by Ray Chandler, Feb 13 2007

A342494 Number of compositions of n with strictly decreasing first quotients.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 12, 15, 21, 30, 39, 50, 65, 82, 103, 129, 160, 196, 240, 293, 352, 422, 500, 593, 706, 832, 974, 1138, 1324, 1534, 1783, 2054, 2362, 2712, 3108, 3552, 4051, 4606, 5232, 5935, 6713, 7573, 8536, 9597, 10773, 12085, 13534, 15119, 16874, 18809
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2021

Keywords

Comments

The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The composition (1,2,3,4,2) has first quotients (2,3/2,4/3,1/2) so is counted under a(12).
The a(1) = 1 through a(6) = 12 compositions:
  (1)  (2)    (3)    (4)      (5)      (6)
       (1,1)  (1,2)  (1,3)    (1,4)    (1,5)
              (2,1)  (2,2)    (2,3)    (2,4)
                     (3,1)    (3,2)    (3,3)
                     (1,2,1)  (4,1)    (4,2)
                              (1,2,2)  (5,1)
                              (1,3,1)  (1,2,3)
                              (2,2,1)  (1,3,2)
                                       (1,4,1)
                                       (2,3,1)
                                       (3,2,1)
                                       (1,2,2,1)
		

Crossrefs

The weakly decreasing version is A069916.
The version for differences instead of quotients is A325548.
The strictly increasing version is A342493.
The unordered version is A342499, ranked by A342525.
The strict unordered version is A342518.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A001055 counts factorizations.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A274199 counts compositions with all adjacent parts x < 2y.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Greater@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]

Extensions

a(21)-a(49) from Alois P. Heinz, Mar 18 2021

A342526 Heinz numbers of integer partitions with weakly decreasing first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 81, 82, 83, 85, 86, 87
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

Also called log-concave-down partitions.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 294 are {1,2,4,4}, with first quotients (2,2,1), so 294 is in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
   12: {1,1,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   52: {1,1,6}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   68: {1,1,7}
   72: {1,1,1,2,2}
   76: {1,1,8}
   78: {1,2,6}
   80: {1,1,1,1,3}
   84: {1,1,2,4}
		

Crossrefs

The version counting strict divisor chains is A057567.
For multiplicities (prime signature) instead of quotients we have A242031.
For differences instead of quotients we have A325361 (count: A320466).
These partitions are counted by A342513 (strict: A342519, ordered: A069916).
The weakly increasing version is A342523.
The strictly decreasing version is A342525.
A000929 counts partitions with all adjacent parts x >= 2y.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A002843 counts compositions with all adjacent parts x <= 2y.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],GreaterEqual@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]

A343939 Number of n-chains of divisors of n.

Original entry on oeis.org

1, 3, 4, 15, 6, 49, 8, 165, 55, 121, 12, 1183, 14, 225, 256, 4845, 18, 3610, 20, 4851, 484, 529, 24, 73125, 351, 729, 4060, 12615, 30, 29791, 32, 435897, 1156, 1225, 1296, 494209, 38, 1521, 1600, 505981, 42, 79507, 44, 46575, 49726, 2209, 48
Offset: 1

Views

Author

Gus Wiseman, May 05 2021

Keywords

Examples

			The a(1) = 1 through a(5) = 6 chains:
  (1)  (1/1)  (1/1/1)  (1/1/1/1)  (1/1/1/1/1)
       (2/1)  (3/1/1)  (2/1/1/1)  (5/1/1/1/1)
       (2/2)  (3/3/1)  (2/2/1/1)  (5/5/1/1/1)
              (3/3/3)  (2/2/2/1)  (5/5/5/1/1)
                       (2/2/2/2)  (5/5/5/5/1)
                       (4/1/1/1)  (5/5/5/5/5)
                       (4/2/1/1)
                       (4/2/2/1)
                       (4/2/2/2)
                       (4/4/1/1)
                       (4/4/2/1)
                       (4/4/2/2)
                       (4/4/4/1)
                       (4/4/4/2)
                       (4/4/4/4)
		

Crossrefs

Diagonal n = k - 1 of the array A077592.
Chains of length n - 1 are counted by A163767.
Diagonal n = k of the array A334997.
The version counting all multisets of divisors (not just chains) is A343935.
A000005(n) counts divisors of n.
A067824(n) counts strict chains of divisors starting with n.
A074206(n) counts strict chains of divisors from n to 1.
A146291(n,k) counts divisors of n with k prime factors (with multiplicity).
A251683(n,k-1) counts strict k-chains of divisors from n to 1.
A253249(n) counts nonempty chains of divisors of n.
A334996(n,k) counts strict k-chains of divisors from n to 1.
A337255(n,k) counts strict k-chains of divisors starting with n.
A343658(n,k) counts k-multisets of divisors of n.
A343662(n,k) counts strict k-chains of divisors of n (row sums: A337256).

Programs

  • Mathematica
    Table[Length[Select[Tuples[Divisors[n],n],OrderedQ[#]&&And@@Divisible@@@Reverse/@Partition[#,2,1]&]],{n,10}]

A096826 Number of maximal-sized antichains in divisor lattice D(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 1, 2, 4, 3, 1, 2, 3, 2, 1, 1, 5, 2, 3, 2, 3, 1, 1, 2, 6, 3, 1, 4, 3, 2, 2, 2, 6, 1, 1, 1, 1, 2, 1, 1, 6, 2, 2, 2, 3, 3, 1, 2, 10, 3, 3, 1, 3, 2, 6, 1, 6, 1, 1, 2, 1, 2, 1, 3, 7, 1, 2, 2, 3, 1, 2, 2, 4, 2, 1, 3, 3, 1, 2, 2, 10, 5, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 17 2004

Keywords

Comments

The divisor lattice D(n) is the lattice of the divisors of the natural number n.

Examples

			From _Gus Wiseman_, Aug 24 2018: (Start)
The a(120) = 6 antichains:
  {8,12,20,30}
  {8,12,15,20}
  {8,10,12,15}
  {6,8,15,20}
  {6,8,10,15}
  {4,6,10,15}
(End)
		

Crossrefs

Programs

  • Sage
    def A096826(n) :
        if n==1 : return 1
        R. = QQ[]; mults = [x[1] for x in factor(n)]
        maxsize = prod((t^(m+1)-1)//(t-1) for m in mults)[sum(mults)//2]
        dlat = LatticePoset((divisors(n), attrcall("divides")))
        count = 0
        for ac in dlat.antichains_iterator() :
            if len(ac) == maxsize : count += 1
        return count
    # Eric M. Schmidt, May 13 2013

Extensions

More terms from Eric M. Schmidt, May 13 2013

A337104 Number of strict chains of divisors from n! to 1 using terms of A130091 (numbers with distinct prime multiplicities).

Original entry on oeis.org

1, 1, 1, 0, 14, 0, 384, 0, 0, 0, 21077680, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2020

Keywords

Comments

The support appears to be {0, 1, 2, 4, 6, 10}.

Examples

			The a(4) = 14 chains:
  24/1
  24/2/1
  24/3/1
  24/4/1
  24/8/1
  24/12/1
  24/4/2/1
  24/8/2/1
  24/8/4/1
  24/12/2/1
  24/12/3/1
  24/12/4/1
  24/8/4/2/1
  24/12/4/2/1
		

Crossrefs

A336867 appears to be the positions of zeros.
A336868 is the characteristic function (image under A057427).
A336942 is the version for superprimorials (n > 1).
A337105 does not require distinct prime multiplicities.
A337074 does not require chains to end with 1.
A337075 is the version for chains not containing n!.
A000005 counts divisors.
A000142 lists factorial numbers.
A001055 counts factorizations.
A027423 counts divisors of factorial numbers.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336414 counts divisors of n! with distinct prime multiplicities.
A336423 counts chains using A130091, with maximal case A336569.
A336425 counts divisible pairs of divisors of n!, both in A130091.
A336571 counts chains of divisors 1 < d < n using A130091.
A337071 counts chains of divisors starting with n!.

Programs

  • Mathematica
    strchns[n_]:=If[n==1,1,If[!UnsameQ@@Last/@FactorInteger[n],0,Sum[strchns[d],{d,Select[DeleteCases[Divisors[n],n],UnsameQ@@Last/@FactorInteger[#]&]}]]];
    Table[strchns[n!],{n,0,8}]

Formula

a(n) = A337075(n) whenever A337075(n) != 0.
a(n) = A337074(n)/2 for n > 1.
a(n) = A336423(n!).

A336940 Number of odd divisors of n!.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 12, 12, 20, 30, 60, 72, 144, 216, 336, 336, 672, 864, 1728, 2160, 3200, 4800, 9600, 10560, 14784, 22176, 28224, 35280, 70560, 86400, 172800, 172800, 245760, 368640, 497664, 559872, 1119744, 1679616, 2363904, 2626560, 5253120, 6451200, 12902400, 16128000
Offset: 0

Views

Author

Gus Wiseman, Aug 23 2020

Keywords

Examples

			The a(1) = 1 through a(8) = 12 divisors:
  1  1  1  1  1   1   1    1
        3  3  3   3   3    3
              5   5   5    5
              15  9   7    7
                  15  9    9
                  45  15   15
                      21   21
                      35   35
                      45   45
                      63   63
                      105  105
                      315  315
		

Crossrefs

A049606 gives the maximum among these divisors, with quotient A060818.
A337257 is the even version.
A000265 gives the maximum odd divisor of n.
A001227 counts odd divisors.
A183063 counts even divisors.
Factorial numbers: A000142, A022559, A027423 (divisors), A048656, A071626, A076716 (factorizations), A325272, A325273, A325617, A336414, A336498.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n!],OddQ]],{n,0,15}]
  • PARI
    a(n) = sumdiv(n!, d, d%2); \\ Michel Marcus, Aug 24 2020
    
  • PARI
    a(n) = numdiv(prod(k=1, n, k >> valuation(k, 2))); \\ Michel Marcus, Aug 27 2020

Formula

a(n) = A001227(n!).
a(n) = A000005(A049606(n)).
a(n) + A337257(n) = A027423(n) = A000005(n!).
From Seiichi Manyama, Aug 27 2020: (Start)
If p is odd prime, a(p) = 2 * a(p-1).
a(n) = A027423(n) / A113474(n) for n > 0. (End)

Extensions

a(36)-a(44) from Seiichi Manyama, Aug 26 2020
Previous Showing 61-70 of 75 results. Next