cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A253563 Permutation of natural numbers: a(0) = 1, a(1) = 2; after which, a(2n) = A253560(a(n)), a(2n+1) = A253550(a(n)).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 9, 5, 16, 12, 18, 10, 27, 15, 25, 7, 32, 24, 36, 20, 54, 30, 50, 14, 81, 45, 75, 21, 125, 35, 49, 11, 64, 48, 72, 40, 108, 60, 100, 28, 162, 90, 150, 42, 250, 70, 98, 22, 243, 135, 225, 63, 375, 105, 147, 33, 625, 175, 245, 55, 343, 77, 121, 13, 128, 96, 144, 80, 216, 120, 200, 56, 324, 180, 300, 84, 500, 140, 196, 44
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Comments

This sequence can be represented as a binary tree. Each child to the left is obtained by applying A253560 to the parent, and each child to the right is obtained by applying A253550 to the parent:
1
|
...................2...................
4 3
8......../ \........6 9......../ \........5
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
16 12 18 10 27 15 25 7
32 24 36 20 54 30 50 14 81 45 75 21 125 35 49 11
etc.
Sequence A253565 is the mirror image of the same tree. Also in binary trees A005940 and A163511 the terms on level of the tree are some permutation of the terms present on the level n of this tree. A252464(n) tells distance of n from 1 in all these trees. Of these four trees, this is the one where the left child is always larger than the right child.
Note that the indexing of sequence starts from 0, although its range starts from one.
a(n) (n>=1) can be obtained by the composition of a bijection between {1,2,3,4,...} and the set of integer partitions and a bijection between the set of integer partitions and {2,3,4,...}. Explanation on the example n=10. Write 2*n = 20 as a binary number: 10100. Consider a Ferrers board whose southeast border is obtained by replacing each 1 by an east step and each 0 by a north step. We obtain the Ferrers board of the partition p = (2,2,1). Finally, a(10) = 2'*2'*1', where m' = m-th prime. Thus, a(10)= 3*3*2 = 18. - Emeric Deutsch, Sep 17 2016

Crossrefs

Inverse: A253564.
Cf. A252737 (row sums), A252738 (row products).

Programs

  • Maple
    a:= proc(n) local m; m:= n; [0]; while m>0 do `if`(1=
          irem(m, 2, 'm'), map(x-> x+1, %), [%[], 0]) od:
          `if`(n=0, 1, mul(ithprime(i), i=%))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Aug 23 2017
  • Mathematica
    p[n_] := p[n] = FactorInteger[n][[-1, 1]];
    b[n_] := n p[n];
    c[1] = 1; c[n_] := (n/p[n]) NextPrime[p[n]];
    a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ[n], b[a[n/2]], c[a[(n-1)/2]]];
    a /@ Range[0, 100] (* Jean-François Alcover, Feb 15 2021 *)

Formula

a(0) = 1, a(1) = 2; after which, a(2n) = A253560(a(n)), a(2n+1) = A253550(a(n)).
As a composition of other permutations:
a(n) = A122111(A005940(n+1)).
a(n) = A253565(A054429(n)).
Other identities and observations. For all n >= 0:
A002110(n) = a(A002450(n)). [Primorials occur at positions (4^n - 1)/3.]
For all n >= 1: a(2n) - a(2n+1) > 0. [See the comment above.]

A161511 Number of 1...0 pairs in the binary representation of 2n.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 6, 4, 5, 5, 6, 5, 7, 6, 7, 5, 8, 7, 8, 6, 9, 7, 8, 5, 6, 6, 7, 6, 8, 7, 8, 6, 9, 8, 9, 7, 10, 8, 9, 6, 10, 9, 10, 8, 11, 9, 10, 7, 12, 10, 11, 8, 12, 9, 10, 6, 7, 7, 8, 7, 9, 8, 9, 7, 10, 9, 10, 8, 11, 9, 10, 7, 11, 10, 11, 9, 12, 10, 11, 8, 13, 11, 12, 9, 13
Offset: 0

Views

Author

Keywords

Comments

Row (partition) sums of A125106.
a(n) is also the weight (= sum of parts) of the integer partition having viabin number n. The viabin number of an integer partition is defined in the following way. Consider the southeast border of the Ferrers board of the integer partition and consider the binary number obtained by replacing each east step with 1 and each north step, except the last one, with 0. The corresponding decimal form is, by definition, the viabin number of the given integer partition. "Viabin" is coined from "via binary". For example, consider the integer partition [2,2,2,1]. The southeast border of its Ferrers board yields 10100, leading to the viabin number 20. - Emeric Deutsch, Jul 24 2017

Examples

			For n = 5, the binary representation of 2n is 1010; the 1...0 pairs are 10xx, 1xx0, and xx10, so a(5) = 3.
		

Crossrefs

Cf. A000120, A243499 (gives the corresponding products), A227183, A056239, A243503, A006068, A163511.
Sum of prime indices of A005940.
Row sums of A125106.
A reverse version is A359043, row sums of A242628.
A029837 adds up standard compositions, row sums of A066099.
A029931 adds up binary indices, row sums of A048793.

Programs

  • Mathematica
    a[0] = 0; a[n_] := If[EvenQ[n], a[n/2] + DigitCount[n/2, 2, 1], a[(n-1)/2] + 1]; Array[a, 93, 0] (* Jean-François Alcover, Sep 09 2017 *)
  • PARI
    a(n)=local(t,k);t=0;k=1;while(n>0,if(n%2==0,k++,t+=k);n\=2);t
    
  • Python
    def A161511(n):
        a, b = 0, 0
        for i, j in enumerate(bin(n)[:1:-1], 1):
            if int(j):
                a += i-b
                b += 1
        return a # Chai Wah Wu, Jul 26 2023
  • Scheme
    ;; Two variants, the recursive one requiring memoizing definec-macro from Antti Karttunen's IntSeq-library.
    (define (A161511 n) (let loop ((n n) (i 1) (s 0)) (cond ((zero? n) s) ((even? n) (loop (/ n 2) (+ i 1) s)) (else (loop (/ (- n 1) 2) i (+ s i))))))
    (definec (A161511 n) (cond ((zero? n) n) ((even? n) (+ (A000120 n) (A161511 (/ n 2)))) (else (+ 1 (A161511 (/ (- n 1) 2))))))
    ;; Antti Karttunen, Jun 28 2014
    

Formula

a(0) = 0; a(2n) = a(n) + A000120(n); a(2n+1) = a(n) + 1.
From Antti Karttunen, Jun 28 2014: (Start)
Can be also obtained by mapping with an appropriate permutation from the lists of partition sizes computed for other enumerations similar to A125106:
a(n) = A227183(A006068(n)).
a(n) = A056239(A005940(n+1)).
a(n) = A243503(A163511(n)). (End)
a(n) = A029931(n) - binomial(A000120(n),2). - Gus Wiseman, Jan 03 2023
a(n) = a(n - A048896(n-1)) + 1 for n>=1 (see Peter J. Taylor link). - Mikhail Kurkov, Jul 04 2025

A368900 LCM-transform of Doudna sequence.

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 3, 2, 7, 1, 1, 1, 5, 1, 3, 2, 11, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 2, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 2, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Let's define "property S" for sequences as follows: If s is any sequence of positive natural numbers, normalized to begin with offset 1, then it satisfies the S-property if LCM-transform(s) is equal to the sequence obtained by applying A014963 to sequence s, or in other words, when for all n >= 1, lcm {s(1)..s(n)} / lcm {s(1)..s(n-1)} = A014963(s(n)). This holds if and only if, for all n >= 1, when, either (case A): s(n) is of the form p^k, p prime, then gcd(s(n), lcm {s(1)..s(n-1)}) must be equal to p^(k-1), or (case B): when s(n) is not a prime power, then gcd(s(n), lcm {s(1)..s(n-1)}) must be equal to s(n). Together the cases (A) and (B) reduce to the condition that each prime power should appear in s before any of its multiples do.
Clearly the Doudna-sequence satisfies the property by the way of its construction, as do many of its variants like A356867 (see A369060).
Also, for any base-2 related permutation b that keeps all the numbers of range [2^k, 2^(1+k)[ in the same range, i.e., if for all n >= 1, A000523(b(n)) = A000523(n), then the above property is automatically satisfied.
Furthermore, because in Doudna-sequence no multiple of any term is located on the same row as the term itself (see the tree-illustration in A005940), it follows that any composition of A005940 with any such base-2 related permutation as mentioned above also automatically satisfies the S-property, for example, the permutations A163511, A243353, A253563, A253565, A366260, A366263 and A366275.
Note: Like A005940 itself, also this sequence might be more logical with the starting offset 0 instead of 1, to better align with the underlying mapping from the binary expansion of n to the prime factorization. - Antti Karttunen, Jan 24 2024

Crossrefs

List of LCM-transforms of permutations (permutation given in parentheses):
Cf. A265576 (A064413; note that the EKG sequence permutation does not satisfy the S-property).
In all following cases, the permutation satisfies the S-property:
Cf. A369041 (A003188), A369042 (A006068), A369043 (A193231), A369044 (A057889), A369041 (A054429). [Base-2 related permutations]
Other permutations that have the same property: A303767, (and when used as an offset=1 sequence): A052330.

Programs

  • Mathematica
    nn = 120; Array[Set[{s[#], a[#]}, {#, #}] &, 2]; j = 2;
    Do[If[EvenQ[n],
      Set[s[n], 2 s[n/2]],
      Set[s[n],
        Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &,
          FactorInteger[s[(n + 1)/2]]]]];
      k = LCM[j, s[n]]; a[n] = k/j; j = k, {n, 3, nn}];
    Array[a, nn] (* Michael De Vlieger, Mar 24 2024 *)
  • PARI
    up_to = 16384;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t) };
    v368900 = LCMtransform(vector(up_to,i,A005940(i)));
    A368900(n) = v368900[n];
    
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A209229(n) = (n && !bitand(n,n-1));
    A368900(n)  = if(1==n, 1, my(x=A000265(n-1)); if(A209229(1+x), prime(1+valuation(n-1,2)), 1));

Formula

a(n) = A368901(n) / A368901(n-1) = lcm {1..A005940(n)} / lcm {1..A005940(n-1)}.
a(n) = A005940(n) / gcd(A005940(n), A368901(n-1)).
a(n) = A014963(A005940(n)). [Because A005940 satisfies the property given in the comments]
For n >= 1, Product_{d|n} a(A005941(d)) = n. [Implied by above]
For n >= 1, a(n) = A369030(1+A054429(n-1)).
For n > 1, if n-1 is a number of the form 2^i - 2^j with i >= j, then a(n) = prime(1+j), otherwise a(n) = 1.

A242628 Irregular table enumerating partitions; n-th row has partitions in previous row with each part incremented, followed by partitions in previous row with an additional part of size 1.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 2, 2, 1, 1, 1, 1, 4, 3, 3, 3, 2, 2, 2, 2, 3, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 5, 4, 4, 4, 3, 3, 3, 3, 4, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 1, 3, 3, 1, 3, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 5, 5, 4, 4, 4, 4, 5, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 5, 2
Offset: 1

Views

Author

Keywords

Comments

This can be calculated using the binary expansion of n; see the PARI program.
The n-th row consists of all partitions with hook size (maximum + number of parts - 1) equal to n.
The partitions in row n of this sequence are the conjugates of the partitions in row n of A125106 taken in reverse order.
Row n is also the reversed partial sums plus one of the n-th composition in standard order (A066099) minus one. - Gus Wiseman, Nov 07 2022

Examples

			The table starts:
  1;
  2; 1,1;
  3; 2,2; 2,1; 1,1,1;
  4; 3,3; 3,2; 2,2,2; 3,1 2,2,1 2,1,1 1,1,1,1;
  ...
		

Crossrefs

Cf. A241596 (another version of this list of partitions), A125106, A240837, A112531, A241597 (compositions).
For other schemes to list integer partitions, please see for example A227739, A112798, A241918, A114994.
First element in each row is A008687.
Last element in each row is A065120.
Heinz numbers of rows are A253565.
Another version is A358134.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=1, [[1]],
          [map(x-> map(y-> y+1, x), b(n-1))[],
           map(x-> [x[], 1], b(n-1))[]])
        end:
    T:= n-> map(x-> x[], b(n))[]:
    seq(T(n), n=1..7);  # Alois P. Heinz, Sep 25 2015
  • Mathematica
    T[1] = {{1}};
    T[n_] := T[n] = Join[T[n-1]+1, Append[#, 1]& /@ T[n-1]];
    Array[T, 7] // Flatten (* Jean-François Alcover, Jan 25 2021 *)
  • PARI
    apart(n) = local(r=[1]); while(n>1,if(n%2==0,for(k=1,#r,r[k]++),r=concat(r,[1]));n\=2);r \\ Generates n-th partition.

A253560 Multiply n by its largest prime factor: a(n) = A006530(n) * n.

Original entry on oeis.org

1, 4, 9, 8, 25, 18, 49, 16, 27, 50, 121, 36, 169, 98, 75, 32, 289, 54, 361, 100, 147, 242, 529, 72, 125, 338, 81, 196, 841, 150, 961, 64, 363, 578, 245, 108, 1369, 722, 507, 200, 1681, 294, 1849, 484, 225, 1058, 2209, 144, 343, 250, 867, 676, 2809, 162, 605, 392, 1083, 1682, 3481, 300, 3721, 1922, 441
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Crossrefs

Essentially the same as A129598, except that here we have a(1) = 1.
Cf. A070003 (same sequence without 1, sorted into ascending order).
Differs from A072995 for the first time at n=15, where a(15) = 75, while A072995(15) = 225.

Programs

Formula

a(1) = 1; for n > 1, a(n) = A006530(n) * n = A000040(A061395(n)) * n.
Other identities:
a(n) >= A253550(n) for all n >= 1.
a(n) = A129598(n) for all n >= 2.
A052126(a(n)) = n. [A052126 works as an inverse function for this injection.]

A359042 Sum of partial sums of the n-th composition in standard order (A066099).

Original entry on oeis.org

0, 1, 2, 3, 3, 5, 4, 6, 4, 7, 6, 9, 5, 8, 7, 10, 5, 9, 8, 12, 7, 11, 10, 14, 6, 10, 9, 13, 8, 12, 11, 15, 6, 11, 10, 15, 9, 14, 13, 18, 8, 13, 12, 17, 11, 16, 15, 20, 7, 12, 11, 16, 10, 15, 14, 19, 9, 14, 13, 18, 12, 17, 16, 21, 7, 13, 12, 18, 11, 17, 16, 22
Offset: 0

Views

Author

Gus Wiseman, Dec 20 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 29th composition in standard order is (1,1,2,1), with partial sums (1,2,4,5), with sum 12, so a(29) = 12.
		

Crossrefs

See link for sequences related to standard compositions.
Each n appears A000009(n) times.
The reverse version is A029931.
Comps counted by this statistic are A053632, ptns A264034, rev ptns A358194.
This is the sum of partial sums of rows of A066099.
The version for Heinz numbers of partitions is A318283, row sums of A358136.
Row sums of A358134.
A011782 counts compositions.
A065120 gives first part of standard compositions, last A001511.
A242628 lists adjusted partial sums, ranked by A253565, row sums A359043.
A358135 gives last minus first of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[Accumulate[stc[n]]],{n,0,100}]

A359043 Sum of adjusted partial sums of the n-th composition in standard order (A066099). Row sums of A242628.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 3, 3, 4, 6, 5, 6, 4, 5, 4, 4, 5, 8, 7, 9, 6, 8, 7, 8, 5, 7, 6, 7, 5, 6, 5, 5, 6, 10, 9, 12, 8, 11, 10, 12, 7, 10, 9, 11, 8, 10, 9, 10, 6, 9, 8, 10, 7, 9, 8, 9, 6, 8, 7, 8, 6, 7, 6, 6, 7, 12, 11, 15, 10, 14, 13, 16, 9, 13, 12, 15, 11, 14, 13
Offset: 0

Views

Author

Gus Wiseman, Dec 21 2022

Keywords

Comments

We define the adjusted partial sums of a composition to be obtained by subtracting one from all parts, taking partial sums, and adding one back to all parts.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 29th composition in standard order is (1,1,2,1), with adjusted partial sums (1,1,2,2), with sum 6, so a(29) = 6.
		

Crossrefs

See link for sequences related to standard compositions.
The unadjusted reverse version is A029931, row sums of A048793.
The reverse version is A161511, row sums of A125106.
Row sums of A242628, ranked by A253565.
The unadjusted version is A359042, row sums of A358134.
A011782 counts compositions.
A066099 lists standard compositions.
A358135 gives last minus first of standard compositions.
A358194 counts partitions by sum and weighted sum.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[Accumulate[stc[n]-1]+1],{n,0,100}]

A358134 Triangle read by rows whose n-th row lists the partial sums of the n-th composition in standard order (row n of A066099).

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 3, 1, 3, 1, 2, 3, 4, 3, 4, 2, 4, 2, 3, 4, 1, 4, 1, 3, 4, 1, 2, 4, 1, 2, 3, 4, 5, 4, 5, 3, 5, 3, 4, 5, 2, 5, 2, 4, 5, 2, 3, 5, 2, 3, 4, 5, 1, 5, 1, 4, 5, 1, 3, 5, 1, 3, 4, 5, 1, 2, 5, 1, 2, 4, 5, 1, 2, 3, 5, 1, 2, 3, 4, 5, 6, 5, 6, 4, 6, 4, 5
Offset: 1

Views

Author

Gus Wiseman, Oct 31 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Triangle begins:
  1
  2
  1 2
  3
  2 3
  1 3
  1 2 3
  4
  3 4
  2 4
  2 3 4
  1 4
  1 3 4
  1 2 4
  1 2 3 4
		

Crossrefs

See link for sequences related to standard compositions.
First element in each row is A065120.
Rows are the partial sums of rows of A066099.
Last element in each row is A070939.
An adjusted version is A242628, ranked by A253565.
The first differences instead of partial sums are A358133.
The version for Heinz numbers of partitions is A358136, ranked by A358137.
Row sums are A359042.
A011782 counts compositions.
A351014 counts distinct runs in standard compositions.
A358135 gives last minus first of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Join@@Table[Accumulate[stc[n]],{n,100}]

A253566 Permutation of natural numbers: a(n) = A243071(A122111(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 7, 5, 12, 16, 14, 32, 24, 10, 15, 64, 13, 128, 28, 20, 48, 256, 30, 9, 96, 11, 56, 512, 26, 1024, 31, 40, 192, 18, 29, 2048, 384, 80, 60, 4096, 52, 8192, 112, 22, 768, 16384, 62, 17, 25, 160, 224, 32768, 27, 36, 120, 320, 1536, 65536, 58, 131072, 3072, 44, 63, 72, 104, 262144, 448, 640, 50, 524288, 61, 1048576, 6144, 21
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Comments

Note the indexing: domain starts from one, while the range includes also zero. See also comments in A253564.
The a(n)-th composition in standard order (graded reverse-lexicographic, A066099) is one plus the first differences of the weakly increasing sequence of prime indices of n with 1 prepended. See formula for a simplification. The triangular form is A358169. The inverse is A253565. Not prepending 1 gives A358171. For Heinz numbers instead of standard compositions we have A325351 (without prepending A325352). - Gus Wiseman, Dec 23 2022

Examples

			From _Gus Wiseman_, Dec 23 2022: (Start)
This represents the following bijection between partitions and compositions. The reversed prime indices of n together with the a(n)-th composition in standard order are:
   1:        () -> ()
   2:       (1) -> (1)
   3:       (2) -> (2)
   4:     (1,1) -> (1,1)
   5:       (3) -> (3)
   6:     (2,1) -> (1,2)
   7:       (4) -> (4)
   8:   (1,1,1) -> (1,1,1)
   9:     (2,2) -> (2,1)
  10:     (3,1) -> (1,3)
  11:       (5) -> (5)
  12:   (2,1,1) -> (1,1,2)
  13:       (6) -> (6)
  14:     (4,1) -> (1,4)
  15:     (3,2) -> (2,2)
  16: (1,1,1,1) -> (1,1,1,1)
(End)
		

Crossrefs

Inverse: A253565.
Applying A000120 gives A001222.
A reverse version is A156552, inverse essentially A005940.
The inverse is A253565, triangular form A242628.
The triangular form is A358169.
A048793 gives partial sums of reversed standard comps, Heinz number A019565.
A066099 lists standard compositions, lengths A000120, sums A070939.
A112798 list prime indices, sum A056239.
A358134 gives partial sums of standard compositions, Heinz number A358170.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    stcinv/@Table[Differences[Prepend[primeMS[n],1]]+1,{n,100}] (* Gus Wiseman, Dec 23 2022 *)
  • Scheme
    (define (A253566 n) (A243071 (A122111 n)))

Formula

a(n) = A243071(A122111(n)).
As a composition of other permutations:
a(n) = A054429(A253564(n)).
a(n) = A336120(n) + A336125(n). - Antti Karttunen, Jul 18 2020
If 2n = Product_{i=1..k} prime(x_i) then a(n) = Sum_{i=1..k-1} 2^(x_k-x_{k-i}+i-1). - Gus Wiseman, Dec 23 2022

A253550 Shift one instance of the largest prime one step towards larger primes: a(1) = 1, for n>1: a(n) = (n / prime(g)) * prime(g+1), where g = A061395(n), index of the greatest prime dividing n.

Original entry on oeis.org

1, 3, 5, 6, 7, 10, 11, 12, 15, 14, 13, 20, 17, 22, 21, 24, 19, 30, 23, 28, 33, 26, 29, 40, 35, 34, 45, 44, 31, 42, 37, 48, 39, 38, 55, 60, 41, 46, 51, 56, 43, 66, 47, 52, 63, 58, 53, 80, 77, 70, 57, 68, 59, 90, 65, 88, 69, 62, 61, 84, 67, 74, 99, 96, 85, 78, 71, 76, 87, 110, 73, 120, 79, 82, 105, 92, 91, 102, 83, 112, 135, 86, 89
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Crossrefs

Inverse: A252462.
Cf. A102750 (same terms, but with 2 instead of 1, sorted into ascending order).

Programs

Formula

a(1) = 1; for n>1: a(n) = A065091(A061395(n)) * A052126(n).
Other identities. For all n >= 1:
A252462(a(n)) = n. [A252462 works as an inverse function for this injection.]
a(n) <= A253560(n).
Previous Showing 11-20 of 27 results. Next