cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A266273 Decimal expansion of zeta'(-18) (the derivative of Riemann's zeta function at -18) (negated).

Original entry on oeis.org

1, 3, 7, 4, 2, 7, 6, 8, 2, 5, 0, 2, 1, 4, 0, 5, 4, 4, 3, 5, 2, 2, 0, 5, 6, 4, 1, 9, 0, 5, 1, 8, 5, 5, 1, 0, 7, 3, 0, 9, 5, 3, 7, 2, 1, 5, 7, 7, 0, 4, 9, 8, 5, 6, 0, 4, 7, 4, 5, 6, 5, 1, 5, 3, 4, 8, 8, 8, 9, 4, 6, 3, 3, 7, 8, 8, 5, 8, 5, 3, 8, 8, 2, 3, 4, 0, 6, 0, 9, 9, 0, 0, 3, 2, 3
Offset: 2

Views

Author

G. C. Greubel, Dec 25 2015

Keywords

Examples

			-13.74276825021405443522056419051855107309537215770498560....
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).

Programs

  • Mathematica
    RealDigits[N[Zeta'[-18], 100]]

Formula

zeta'(-18) = -(97692469875*zeta(19))/(8*Pi^18) = - log(A(18)).
Equals -(43867/3192)*(zeta(19)/zeta(18)).

Extensions

Offset corrected by Rick L. Shepherd, May 30 2016

A266274 Decimal expansion of zeta'(-19) (the derivative of Riemann's zeta function at -19) (negated).

Original entry on oeis.org

2, 9, 9, 6, 5, 5, 2, 9, 8, 3, 1, 3, 9, 2, 3, 5, 1, 9, 3, 9, 4, 3, 1, 8, 6, 5, 2, 9, 7, 2, 7, 4, 2, 0, 1, 7, 9, 1, 9, 0, 8, 2, 2, 6, 1, 0, 9, 1, 1, 5, 5, 6, 5, 9, 1, 5, 8, 8, 1, 8, 7, 1, 6, 6, 8, 2, 0, 5, 7, 6, 1, 6, 0, 2, 8, 6, 7, 6, 7, 7, 6, 1, 1, 7, 2, 6, 8, 7, 3, 6, 3, 0, 3, 4
Offset: 2

Views

Author

G. C. Greubel, Dec 26 2015

Keywords

Examples

			-29.965529831392351939431865297274201791908226109115565915881....
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266275 (zeta'(-20)).

Programs

  • Mathematica
    RealDigits[N[Zeta'[-19], 100]]

Formula

zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant.
zeta'(-19) = -48069674759189/512143632000 - log(A(19)).

Extensions

Offset corrected by Rick L. Shepherd, May 30 2016

A266275 Decimal expansion of zeta'(-20) (the derivative of Riemann's zeta function at -20).

Original entry on oeis.org

1, 3, 2, 2, 8, 0, 9, 9, 7, 5, 0, 4, 2, 1, 2, 5, 1, 4, 5, 2, 7, 0, 9, 8, 2, 1, 1, 5, 8, 5, 7, 8, 5, 5, 1, 8, 6, 8, 0, 6, 4, 8, 0, 0, 9, 9, 9, 9, 5, 5, 0, 3, 1, 4, 5, 8, 8, 4, 7, 4, 5, 0, 1, 9, 2, 4, 1, 4, 2, 9, 1, 5, 7, 1, 9, 9, 4, 0, 4, 2, 9, 3, 8, 7, 7, 8, 3, 9, 4, 6, 4
Offset: 3

Views

Author

G. C. Greubel, Dec 26 2015

Keywords

Examples

			132.28099750421251452709821158578551868064800999955031458847450192414...
		

Crossrefs

Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)).

Programs

  • Mathematica
    RealDigits[N[Zeta'[-20], 100]]

Formula

zeta'(-20) = (9280784638125*zeta(21))/(8*Pi^20) = - log(A(20)).
Equals (174611/1320)*(zeta(21)/zeta(20)).

Extensions

Offset corrected by Rick L. Shepherd, May 30 2016

A261506 Decimal expansion of -zeta'(4).

Original entry on oeis.org

0, 6, 8, 9, 1, 1, 2, 6, 5, 8, 9, 6, 1, 2, 5, 3, 7, 9, 8, 4, 8, 8, 2, 9, 3, 6, 5, 5, 8, 7, 4, 4, 0, 8, 2, 7, 1, 5, 0, 0, 1, 6, 3, 7, 4, 8, 7, 1, 3, 7, 8, 4, 6, 3, 8, 2, 7, 5, 8, 5, 7, 0, 6, 0, 1, 8, 4, 2, 8, 4, 9, 8, 5, 2, 7, 6, 2, 1, 2, 0, 1, 3, 3, 4, 7, 8, 0, 4, 1, 0, 3, 8, 9, 8, 4, 7, 6, 0, 2, 2, 9, 0, 1, 8, 8, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2015

Keywords

Examples

			0.06891126589612537984882936558744082715001637487137...
		

Crossrefs

Cf. A075700 (0), A073002 (2), A244115 (3).
Cf. A084448 (-1), A240966 (-2), A259068 (-3), A259069 (-4), A259070 (-5), A259071 (-6), A259072 (-7), A259073 (-8).

Programs

  • Mathematica
    Flatten[{0, RealDigits[-Zeta'[4], 10, 105][[1]]}]

Formula

Sum_{n>=1} log(n) / n^4.

A206623 G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^3).

Original entry on oeis.org

1, 2, 18, 88, 398, 1768, 7508, 30644, 121310, 467234, 1756080, 6457168, 23274788, 82381584, 286760344, 982874120, 3320800590, 11070619228, 36446345198, 118581503192, 381552358872, 1214868568728, 3829841265428, 11959828895612, 37013411304892, 113570015855642
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Comments

Convolution of A023872 and A248882. - Vaclav Kotesovec, Aug 19 2015

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 88*x^3 + 398*x^4 + 1768*x^5 + 7508*x^6 +...
where A(x) = (1+x)/(1-x) * (1+x^2)^8/(1-x^2)^8 * (1+x^3)^27/(1-x^3)^27 *...
Also, A(x) = Euler transform of [2,15,54,120,250,405,686,960,1458,...]:
A(x) = 1/((1-x)^2*(1-x^2)^15*(1-x^3)^54*(1-x^4)^120*(1-x^5)^250*(1-x^6)^405*...).
		

Crossrefs

Cf. A156616, A206622, A206624, A001159 (sigma_4).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
  • PARI
    {a(n)=polcoeff(prod(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))^(m^3)),n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 4)-sigma(m, 4))/8*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=local(InvEulerGF=x*(2+15*x+46*x^2+60*x^3+46*x^4+15*x^5+2*x^6)/(1-x^2+x*O(x^n))^4);polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^polcoeff(InvEulerGF,k)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} (sigma_4(2*n) - sigma_4(n))/8 * x^n/n ), where sigma_4(n) is the sum of 4th powers of divisors of n (A001159).
Inverse Euler transform has g.f.: x*(2 + 15*x + 46*x^2 + 60*x^3 + 46*x^4 + 15*x^5 + 2*x^6)/(1-x^2)^4.
a(n) ~ (93*Zeta(5))^(59/600) * exp(5/4 * (93*Zeta(5)/2)^(1/5) * n^(4/5) + Zeta'(-3)) / (2^(59/100) * sqrt(5*Pi) * n^(359/600)), where Zeta(5) = A013663, Zeta'(-3) = A259068. - Vaclav Kotesovec, Aug 19 2015

A057528 5th level factorials: product of first n 4th level factorials.

Original entry on oeis.org

1, 1, 2, 96, 31850496, 2524286414780230533120, 1189172215782988266980141580906985588465965465600000
Offset: 0

Views

Author

Henry Bottomley, Sep 02 2000

Keywords

Comments

In general for k-th level factorials a(n) =Product of first n (k-1)-th level factorials =Product[i^C(n-i+k-1,n-i)] over 1<=i<=n.

Crossrefs

Cf. A000142, A000178, A055462, A057527, A260404 for first, second, third, fourth and sixth level factorials.

Programs

  • Mathematica
    Table[Product[i^Binomial[n-i+4,4],{i,1,n}],{n,0,10}] (* Vaclav Kotesovec, Jul 24 2015 *)
    Nest[FoldList[Times,#]&,Range[0,10]!,4] (* Harvey P. Dale, Dec 15 2021 *)

Formula

a(n) =a(n-1)*A057527(n) =Product[i^A000292(n-i+4)] over 1<=i<=n.
a(n) ~ exp(25/144 - 109*n/144 - 35*n^2/24 - 379*n^3/432 - 125*n^4/576 - 137*n^5/7200 + (35 + 30*n + 6*n^2)*Zeta(3)/(96*Pi^2) - Zeta(5)/(32*Pi^4) + (5+2*n)*Zeta'(-3)/12) * n^((5+2*n)*(19/288 + 25*n/144 + 5*n^2/36 + n^3/24 + n^4/240)) * (2*Pi)^((n+1)*(n+2)*(n+3)*(n+4)/48) / A^((5+2*n)*(5 + 5*n + n^2)/12), where Zeta(3) = A002117, Zeta(5) = A013663, Zeta'(-3) = A259068 = 0.00537857635777430114441697421... and A = A074962 = 1.282427129100622636875... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 24 2015

A260404 6th level factorials: product of first n 5th level factorials.

Original entry on oeis.org

1, 1, 2, 192, 6115295232, 15436756676507918107049554083840, 18356962141505758798331790171539976807981714702571497465907439808868887035904000000
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 24 2015

Keywords

Comments

In general for k-th level factorials a(n) = Product_{j=1..n} j^C(n-j+k-1,k-1).

Crossrefs

Programs

  • Mathematica
    Table[Product[i^Binomial[n-i+5,5],{i,1,n}],{n,0,10}]

Formula

a(n) ~ exp(137/720 - 11*n/16 - 737*n^2/480 - 53*n^3/48 - 421*n^4/1152 - 137*n^5/2400 - 49*n^6/14400 + (3 + n)*(15 + 12*n + 2*n^2)*Zeta(3)/(96*Pi^2) - (3 + n)*Zeta(5) / (32*Pi^4) + (17 + 12*n + 2*n^2)*Zeta'(-3)/24 + Zeta'(-5)/120) * n^(19087/60480 + n + 137*n^2/120 + 5*n^3/8 + 17*n^4/96 + n^5/40 + n^6/720) * (2*Pi)^((n+1)*(n+2)*(n+3)*(n+4)*(n+5)/240) / A^(137/60 + 15*n/4 + 17*n^2/8 + n^3/2 + n^4/24), where Zeta(3) = A002117, Zeta(5) = A013663, Zeta'(-3) = A259068, Zeta'(-5) = A259070 and A = A074962 is the Glaisher-Kinkelin constant.

A057527 4th level factorials: product of first n superduperfactorials.

Original entry on oeis.org

1, 1, 2, 48, 331776, 79254226206720, 471092427871945743012986880000, 351177419973413722592573060611594181593855426560000000000
Offset: 0

Views

Author

Henry Bottomley, Sep 02 2000

Keywords

Comments

In general for k-th level factorials a(n) =Product of first n (k-1)-th level factorials =Product[i^C(n-i+k-1,n-i)] over 1<=i<=n.

Examples

			a(4) =((4!*3!*2!*1!)*(3!*2!*1!)*(2!*1!)*(1!)) * ((3!*2!*1!)*(2!*1!)*(1!)) * ((2!*1!)*(1!)) * ((1!)) =24*6^3*2^6*1^10 =331776
		

Crossrefs

Cf. A000142, A000178, A055462, A057528, A260404 for first, second, third, fifth and sixth level factorials.

Programs

  • Mathematica
    Table[Product[i^Binomial[n-i+3,3],{i,1,n}],{n,0,10}] (* Vaclav Kotesovec, Jul 24 2015 *)
    Nest[FoldList[Times,#]&,Range[0,8]!,3] (* Harvey P. Dale, Jan 08 2024 *)

Formula

a(n) =a(n-1)*A055462(n) =Product[i^A000332(n-i)] over 1<=i<=n.
a(n) ~ exp(11/72 - 5*n/6 - 4*n^2/3 - 11*n^3/18 - 25*n^4/288 + Zeta(3)*(n+2) / (8*Pi^2) + Zeta'(-3)/6) * n^(251/720 + n + 11*n^2/12 + n^3/3 + n^4/24) * (2*Pi)^((n+1)*(n+2)*(n+3)/12) / A^(11/6 + 2*n + n^2/2), where Zeta(3) = A002117, Zeta'(-3) = A259068 = 0.0053785763577743011444169742104138428956644397... and A = A074962 = 1.28242712910062263687534256886979... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 24 2015

A255511 Decimal expansion of a constant related to A255358.

Original entry on oeis.org

4, 1, 1, 3, 7, 4, 0, 5, 5, 2, 0, 1, 5, 3, 3, 8, 1, 2, 3, 0, 5, 2, 4, 5, 3, 3, 4, 0, 0, 9, 0, 3, 6, 8, 1, 3, 6, 3, 9, 5, 7, 6, 3, 8, 1, 5, 1, 9, 4, 7, 7, 1, 5, 8, 9, 6, 5, 8, 1, 4, 0, 4, 6, 3, 0, 8, 9, 2, 2, 4, 5, 4, 0, 6, 0, 1, 1, 4, 8, 1, 3, 0, 0, 8, 7, 7, 9, 8, 9, 6, 1, 4, 7, 9, 4, 3, 0, 0, 4, 4, 8, 2, 9, 6, 8
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 24 2015

Keywords

Examples

			4.113740552015338123052453340090368136395763815194771589658140463089224...
		

Crossrefs

Formula

Equals limit n->infinity (Product_{k=0..n} (k^3)!) / (n^(29/40 + 3*n/2 + 3*n^2/4 + 3*n^3/2 + 3*n^4/4) * (2*Pi)^(n/2) / exp(n*(n+2)*(12 - 6*n + 7*n^2)/16)).
Equals (2*Pi)^(3/4) * exp(-11/240 - 3*Zeta'(-3)) * Product_{n>=1} ((n^3)!/stirling(n^3)), where stirling(n^3) = sqrt(2*Pi) * n^(3*n^3 + 3/2) / exp(n^3) is the Stirling approximation of (n^3)! and Zeta'(-3) = A259068. - Vaclav Kotesovec, Apr 20 2016

A271170 Decimal expansion of the logarithm of the generalized Glaisher-Kinkelin constant A(3) (negated).

Original entry on oeis.org

0, 2, 0, 6, 5, 6, 3, 5, 4, 1, 3, 5, 5, 5, 2, 0, 7, 8, 9, 2, 2, 1, 9, 4, 7, 5, 1, 9, 8, 8, 1, 9, 1, 6, 2, 0, 6, 7, 3, 4, 4, 2, 2, 1, 7, 5, 2, 0, 0, 7, 3, 2, 8, 4, 8, 3, 7, 2, 2, 4, 8, 0, 1, 0, 0, 1, 1, 0, 2, 2, 7, 9, 7, 7, 5, 7, 0, 1, 8, 4, 7, 3, 6, 3, 8, 7, 2, 8, 8, 1, 6, 4, 8, 6, 0, 3
Offset: 0

Views

Author

G. C. Greubel, Apr 01 2016

Keywords

Comments

The logarithm of the third Bendersky constant.

Examples

			-0.02065635413555207892219475198819162067344221752007...
		

Crossrefs

log(A(b)): A225746 (b=1), (-1) * A240966 (b=2).

Programs

  • Mathematica
    Join[{0}, RealDigits[(BernoulliB[4]/4)*(EulerGamma + Log[2*Pi] - Zeta'[4]/Zeta[4]), 10, 100] // First]

Formula

Equals (Bernoulli(4)/4)*(EulerGamma + log(2*Pi) - (Zeta'(4)/Zeta(4))).
log(A(3)) = HarmonicNumber(3)*Bernoulli(4)/4 - Zeta'(-3).
Previous Showing 11-20 of 24 results. Next