cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A324168 Number of non-crossing antichains of nonempty subsets of {1,...,n}.

Original entry on oeis.org

1, 2, 5, 19, 120, 1084, 11783, 141110, 1791156, 23646352, 321220257, 4459886776, 63000867229, 902528825332, 13080523942476, 191445447535373, 2825542818304080, 42005234042942228, 628422035415996065, 9454076958795999908, 142933849346150225253, 2170556938059142024688
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

An antichain is non-crossing if no pair of distinct parts is of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The a(0) = 1 through a(3) = 19 non-crossing antichains:
  {}  {}     {}        {}
      {{1}}  {{1}}     {{1}}
             {{2}}     {{2}}
             {{12}}    {{3}}
             {{1}{2}}  {{12}}
                       {{13}}
                       {{23}}
                       {{123}}
                       {{1}{2}}
                       {{1}{3}}
                       {{2}{3}}
                       {{1}{23}}
                       {{2}{13}}
                       {{3}{12}}
                       {{12}{13}}
                       {{12}{23}}
                       {{13}{23}}
                       {{1}{2}{3}}
                       {{12}{13}{23}}
		

Crossrefs

Cf. A000108 (non-crossing set partitions), A000124, A000372 (antichains), A001006, A001263, A006126 (antichain covers), A014466 (nonempty antichains), A054726 (non-crossing graphs), A099947, A261005, A306438.

Programs

  • Mathematica
    nn=6;
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
  • PARI
    seq(n)={my(f=O(1)); for(n=2, n, f = 1 + (4*x + x^2)*f^2 - 3*x^2*(1 + x)*f^3); Vec(subst(x*(1 + x^2*f^2 - 3*x^3*f^3), x, x/(1-2*x))/x) } \\ Andrew Howroyd, Jan 20 2023

Formula

Binomial transform of A324167.
G.f.: A(x) = B(x/(1-2*x))/x where B(x)/x is the g.f. of A359984. - Andrew Howroyd, Jan 20 2023

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 20 2023

A326360 Number of maximal antichains of nonempty, non-singleton subsets of {1..n}.

Original entry on oeis.org

1, 1, 1, 2, 13, 279, 29820, 123590767
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no element is a subset of any other.

Examples

			The a(1) = 1 through a(4) = 13 maximal antichains:
  {}  {12}  {123}         {1234}
            {12}{13}{23}  {12}{134}{234}
                          {13}{124}{234}
                          {14}{123}{234}
                          {23}{124}{134}
                          {24}{123}{134}
                          {34}{123}{124}
                          {12}{13}{14}{234}
                          {12}{23}{24}{134}
                          {13}{23}{34}{124}
                          {14}{24}{34}{123}
                          {123}{124}{134}{234}
                          {12}{13}{14}{23}{24}{34}
		

Crossrefs

Antichains of nonempty, non-singleton sets are A307249.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n],{2,n}],SubsetQ]]],{n,0,4}]
  • Python
    # see Ignatov links
    # Dmitry I. Ignatov, Oct 14 2021

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A326359(k) for n >= 2. - Andrew Howroyd, Nov 19 2021

Extensions

a(6) from Andrew Howroyd, Aug 14 2019
a(7) from Dmitry I. Ignatov, Oct 14 2021

A304999 Number of labeled antichains of finite sets spanning n vertices with singleton edges allowed.

Original entry on oeis.org

1, 1, 5, 53, 1577, 212137, 496946349, 309068823607069, 14369391923126237496803793, 146629927766168786109802623629262590838145873
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Comments

Only the non-singleton edges are required to form an antichain.

Examples

			The a(2) = 5 antichains:
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
  {{1},{2},{1,2}}
		

Crossrefs

Formula

Exponential transform of A304985.
Inverse binomial transform of A305000. - Aniruddha Biswas, May 12 2024

Extensions

a(5)-a(8) from Gus Wiseman, May 31 2018
a(9) from Aniruddha Biswas, May 12 2024

A327426 Number of non-connected, unlabeled, antichain covers of {1..n} (vertex-connectivity 0).

Original entry on oeis.org

1, 1, 1, 2, 6, 23, 201, 16345
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices. A singleton is not considered connected.
The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 23 antichains:
    {1}{2}  {1}{23}    {1}{234}         {1}{2345}
            {1}{2}{3}  {12}{34}         {12}{345}
                       {1}{2}{34}       {1}{2}{345}
                       {1}{24}{34}      {1}{23}{45}
                       {1}{2}{3}{4}     {12}{35}{45}
                       {1}{23}{24}{34}  {1}{25}{345}
                                        {1}{2}{3}{45}
                                        {1}{245}{345}
                                        {1}{2}{35}{45}
                                        {1}{2}{3}{4}{5}
                                        {1}{24}{35}{45}
                                        {1}{25}{35}{45}
                                        {12}{34}{35}{45}
                                        {1}{24}{25}{345}
                                        {1}{23}{245}{345}
                                        {1}{2}{34}{35}{45}
                                        {1}{235}{245}{345}
                                        {1}{23}{24}{35}{45}
                                        {1}{25}{34}{35}{45}
                                        {1}{23}{24}{25}{345}
                                        {1}{234}{235}{245}{345}
                                        {1}{24}{25}{34}{35}{45}
                                        {1}{23}{24}{25}{34}{35}{45}
		

Crossrefs

Column k = 0 of A327359.
The labeled version is A120338.
The non-covering version is A327424 (partial sums).

Formula

a(n > 1) = A261005(n) - A261006(n).

A305999 Number of unlabeled spanning intersecting set-systems on n vertices with no singletons.

Original entry on oeis.org

1, 0, 1, 6, 76, 12916
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

An intersecting set-system S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. S is spanning if every vertex is contained in some edge. A singleton is an edge containing only one vertex.

Examples

			Non-isomorphic representative of the a(3) = 6 set-systems:
{{1,2,3}}
{{1,3},{2,3}}
{{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Formula

a(n) = A306001(n) - A306001(n-1) for n > 0. - Andrew Howroyd, Aug 12 2019

Extensions

a(5) from Andrew Howroyd, Aug 12 2019

A320353 Number of antichains of multisets whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 1, 3, 5, 11, 17, 36, 56, 107, 175, 311, 505, 887
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2018

Keywords

Examples

			The a(1) = 1 through a(5) = 17 antichains:
  {{1}}  {{2}}      {{3}}          {{4}}              {{5}}
         {{1,1}}    {{1,2}}        {{1,3}}            {{1,4}}
         {{1},{1}}  {{1,1,1}}      {{2,2}}            {{2,3}}
                    {{1},{2}}      {{1,1,2}}          {{1,1,3}}
                    {{1},{1},{1}}  {{1},{3}}          {{1,2,2}}
                                   {{2},{2}}          {{1},{4}}
                                   {{1,1,1,1}}        {{2},{3}}
                                   {{2},{1,1}}        {{1,1,1,2}}
                                   {{1,1},{1,1}}      {{1},{2,2}}
                                   {{1},{1},{2}}      {{3},{1,1}}
                                   {{1},{1},{1},{1}}  {{1,1,1,1,1}}
                                                      {{1,1},{1,2}}
                                                      {{1},{1},{3}}
                                                      {{1},{2},{2}}
                                                      {{2},{1,1,1}}
                                                      {{1},{1},{1},{2}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={};
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],antiQ]],{n,8}]

A327358 Triangle read by rows where T(n,k) is the number of unlabeled antichains of nonempty sets covering n vertices with vertex-connectivity >= k.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 5, 3, 2, 0, 20, 14, 10, 6, 0, 180, 157, 128, 91, 54, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 09 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.
The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.
If empty edges are allowed, we have T(0,0) = 2.

Examples

			Triangle begins:
    1
    1   0
    2   1   0
    5   3   2   0
   20  14  10   6   0
  180 157 128  91  54   0
Non-isomorphic representatives of the antichains counted in row n = 4:
  {1234}          {1234}           {1234}           {1234}
  {1}{234}        {12}{134}        {123}{124}       {12}{134}{234}
  {12}{34}        {123}{124}       {12}{13}{234}    {123}{124}{134}
  {12}{134}       {12}{13}{14}     {12}{134}{234}   {12}{13}{14}{234}
  {123}{124}      {12}{13}{24}     {123}{124}{134}  {123}{124}{134}{234}
  {1}{2}{34}      {12}{13}{234}    {12}{13}{24}{34} {12}{13}{14}{23}{24}{34}
  {2}{13}{14}     {12}{134}{234}   {12}{13}{14}{234}
  {12}{13}{14}    {123}{124}{134}  {12}{13}{14}{23}{24}
  {12}{13}{24}    {12}{13}{14}{23} {123}{124}{134}{234}
  {1}{2}{3}{4}    {12}{13}{24}{34} {12}{13}{14}{23}{24}{34}
  {12}{13}{234}   {12}{13}{14}{234}
  {12}{134}{234}  {12}{13}{14}{23}{24}
  {123}{124}{134} {123}{124}{134}{234}
  {4}{12}{13}{23} {12}{13}{14}{23}{24}{34}
  {12}{13}{14}{23}
  {12}{13}{24}{34}
  {12}{13}{14}{234}
  {12}{13}{14}{23}{24}
  {123}{124}{134}{234}
  {12}{13}{14}{23}{24}{34}
		

Crossrefs

Column k = 0 is A261005, or A006602 if empty edges are allowed.
Column k = 1 is A261006 (clutters), if we assume A261006(0) = A261006(1) = 0.
Column k = 2 is A305028 (blobs), if we assume A305028(0) = A305028(2) = 0.
Column k = n - 1 is A327425 (cointersecting).
The labeled version is A327350.
Negated first differences of rows are A327359.

A327359 Triangle read by rows where T(n,k) is the number of unlabeled antichains of nonempty sets covering n vertices with vertex-connectivity exactly k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 1, 2, 0, 6, 4, 4, 6, 0, 23, 29, 37, 37, 54, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 10 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.
The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.
If empty edges are allowed, we have T(0,0) = 2.

Examples

			Triangle begins:
   1
   1  0
   1  1  0
   2  1  2  0
   6  4  4  6  0
  23 29 37 37 54  0
Row n = 4 counts the following antichains:
{1}{234}      {14}{234}        {134}{234}           {1234}
{12}{34}      {13}{24}{34}     {13}{14}{234}        {12}{134}{234}
{1}{2}{34}    {14}{24}{34}     {12}{13}{24}{34}     {124}{134}{234}
{1}{24}{34}   {14}{23}{24}{34} {13}{14}{23}{24}{34} {12}{13}{14}{234}
{1}{2}{3}{4}                                        {123}{124}{134}{234}
{1}{23}{24}{34}                                     {12}{13}{14}{23}{24}{34}
		

Crossrefs

Row sums are A261005, or A006602 if empty edges are allowed.
Column k = 0 is A327426.
Column k = 1 is A327436.
Column k = n - 1 is A327425.
The labeled version is A327351.

A327437 Number of unlabeled antichains of nonempty subsets of {1..n} that are either non-connected or non-covering (spanning edge-connectivity 0).

Original entry on oeis.org

1, 1, 3, 6, 15, 52, 410, 32697
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 15 antichains:
  {}  {}         {}             {}
      {{1}}      {{1}}          {{1}}
      {{1},{2}}  {{1,2}}        {{1,2}}
                 {{1},{2}}      {{1},{2}}
                 {{1},{2,3}}    {{1,2,3}}
                 {{1},{2},{3}}  {{1},{2,3}}
                                {{1,2},{1,3}}
                                {{1},{2},{3}}
                                {{1},{2,3,4}}
                                {{1,2},{3,4}}
                                {{1},{2},{3,4}}
                                {{1},{2},{3},{4}}
                                {{2},{1,3},{1,4}}
                                {{1,2},{1,3},{2,3}}
                                {{4},{1,2},{1,3},{2,3}}
		

Crossrefs

Column k = 0 of A327438.
The labeled version is A327355.
The covering case is A327426.

Formula

a(n > 0) = A306505(n) - A261006(n).

A306550 Array read by antidiagonals where A(n,k) is the number of labeled k-antichains covering n vertices.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 6, 0, 0, 0, 0, 1, 25, 2, 0, 0, 0, 0, 1, 90, 56, 0, 0, 0, 0, 0, 1, 301, 790, 25, 0, 0, 0, 0, 0, 1, 966, 8380, 1895, 6, 0, 0, 0, 0, 0, 1, 3025, 76482, 70370, 2116, 1, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Feb 23 2019

Keywords

Examples

			Array begins:
    n=0: n=1: n=2: n=3: n=4: n=5:
---------------------------------
k=0:  1    0    0    0    0    0
k=1:  1    1    1    1    1    1
k=2:  0    0    1    6   25   90
k=3:  0    0    0    2   56  790
k=4:  0    0    0    0   25 1895
k=5:  0    0    0    0    6 2116
Column n = 3 counts the following antichains:
  {{123}}  {{1}{23}}   {{1}{2}{3}}
           {{2}{13}}   {{12}{13}{23}}
           {{3}{12}}
           {{12}{13}}
           {{12}{23}}
           {{13}{23}}
		

Crossrefs

Column sums are A006126. Row k = 2 is A000392. Rows k = 3-9 are A056046-A056049, A056052, A056101, A056104.

Programs

  • Mathematica
    nn=8;
    stableSets[u_,Q_,k_]:=If[k==0,{{}},If[Length[u]==0,{},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q,k],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q,k-1]]]]];
    ae[n_,k_]:=Length[Select[stableSets[Subsets[Range[n]],SubsetQ,k],Union@@#==Range[n]&]];
    Table[ae[k,n-k],{n,0,nn},{k,0,n}]
Previous Showing 21-30 of 34 results. Next