A007179
Dual pairs of integrals arising from reflection coefficients.
Original entry on oeis.org
0, 1, 1, 4, 6, 16, 28, 64, 120, 256, 496, 1024, 2016, 4096, 8128, 16384, 32640, 65536, 130816, 262144, 523776, 1048576, 2096128, 4194304, 8386560, 16777216, 33550336, 67108864, 134209536, 268435456, 536854528, 1073741824, 2147450880, 4294967296, 8589869056
Offset: 0
From _Gus Wiseman_, Feb 26 2022: (Start)
Also the number of integer compositions of n with at least one odd part. For example, the a(1) = 1 through a(5) = 16 compositions are:
(1) (1,1) (3) (1,3) (5)
(1,2) (3,1) (1,4)
(2,1) (1,1,2) (2,3)
(1,1,1) (1,2,1) (3,2)
(2,1,1) (4,1)
(1,1,1,1) (1,1,3)
(1,2,2)
(1,3,1)
(2,1,2)
(2,2,1)
(3,1,1)
(1,1,1,2)
(1,1,2,1)
(1,2,1,1)
(2,1,1,1)
(1,1,1,1,1)
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- J. Heading, Theorem relating to the development of a reflection coefficient in terms of a small parameter, J. Phys. A 14 (1981), 357-367.
- Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
- A. Yajima, How to calculate the number of stereoisomers of inositol-homologs, Bull. Chem. Soc. Jpn. 2014, 87, 1260-1264 | doi:10.1246/bcsj.20140204. See Tables 1 and 2 (and text). - _N. J. A. Sloane_, Mar 26 2015
- Index entries for linear recurrences with constant coefficients, signature (2,2,-4).
Even bisection is
A006516 = 2^(n-1)*(2^n - 1).
A000045(n-1) counts compositions without odd parts, non-singleton
A077896.
A003242 counts Carlitz compositions.
A052952 (or
A074331) counts non-singleton compositions without even parts.
-
[Floor(2^n/2-2^(n/2)*(1+(-1)^n)/4): n in [0..40]]; // Vincenzo Librandi, Aug 20 2011
-
f := n-> if n mod 2 = 0 then 2^(n-1)-2^((n-2)/2) else 2^(n-1); fi;
-
LinearRecurrence[{2,2,-4},{0,1,1},30] (* Harvey P. Dale, Nov 30 2015 *)
Table[2^(n-1)-If[EvenQ[n],2^(n/2-1),0],{n,0,15}] (* Gus Wiseman, Feb 26 2022 *)
-
Vec(x*(1-x)/((1-2*x)*(1-2*x^2)) + O(x^50)) \\ Michel Marcus, Jan 28 2016
A342759
Fold a square sheet of paper alternately vertically to the left and horizontally downwards; after each fold, draw a line along each inward crease; after n folds, the resulting graph has a(n) regions.
Original entry on oeis.org
1, 2, 3, 4, 6, 10, 16, 25, 43, 73, 133, 241, 457, 865, 1681, 3265, 6433, 12673, 25153, 49921, 99457, 198145, 395521, 789505, 1577473, 3151873, 6300673, 12595201, 25184257, 50356225, 100700161
Offset: 0
See illustration in Links section.
- Rémy Sigrist and N. J. A. Sloane, Notes on Two-Dimensional Paper-Folding, Manuscript in preparation, April 2021.
- J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11.
- J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11. [Local copy]
- Rémy Sigrist, Illustration of initial terms
- Rémy Sigrist, Illustration of the number of vertices of degree 1 for n = 0..8
- Rémy Sigrist, C# program for A342759
- N. J. A. Sloane, Illustration of G(n) for n = 0..4
A183978
1/4 the number of (n+1) X 2 binary arrays with all 2 X 2 subblock sums the same.
Original entry on oeis.org
4, 6, 9, 15, 25, 45, 81, 153, 289, 561, 1089, 2145, 4225, 8385, 16641, 33153, 66049, 131841, 263169, 525825, 1050625, 2100225, 4198401, 8394753, 16785409, 33566721, 67125249, 134242305, 268468225, 536920065, 1073807361, 2147581953, 4295098369
Offset: 1
Some solutions for 5X2
..0..1....1..0....1..0....1..1....0..1....1..0....1..0....0..1....0..1....0..1
..0..0....1..0....1..0....1..0....1..0....1..0....1..0....0..1....1..0....0..1
..1..0....1..0....0..1....1..1....0..1....0..1....0..1....1..0....0..1....1..0
..0..0....1..0....1..0....0..1....1..0....1..0....0..1....1..0....0..1....0..1
..1..0....1..0....1..0....1..1....1..0....0..1....0..1....1..0....1..0....0..1
Conjectured to be the main diagonal of
A274636.
A232580
Number of binary sequences of length n that contain at least one contiguous subsequence 011.
Original entry on oeis.org
0, 0, 0, 1, 4, 12, 31, 74, 168, 369, 792, 1672, 3487, 7206, 14788, 30185, 61356, 124308, 251199, 506578, 1019920, 2050785, 4119280, 8267216, 16580799, 33236622, 66594636, 133385689, 267089188, 534692604, 1070217247, 2141780762, 4285739832, 8575004241
Offset: 0
a(4) = 4 because we have: 0011, 0110, 0111, 1011.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 34.
- Index entries for linear recurrences with constant coefficients, signature (4,-4,-1,2).
For the contiguous pattern (1,1) or (0,0) we have
A000225.
For the contiguous pattern (1,0,1) or (0,1,0) we have
A000253.
For the contiguous pattern (1,0) or (0,1) we have
A000295.
Numbers whose binary expansion is of this type are
A004750.
For the contiguous pattern (1,1,1) or (0,0,0) we have
A050231.
The not necessarily contiguous version is
A324172.
-
nn=40;a=x/(1-x);CoefficientList[Series[a^2 x/(1-a x)/(1-2x),{x,0,nn}],x]
(* second program *)
Table[Length[Select[Tuples[{0,1},n],MatchQ[#,{_,0,1,1,_}]&]],{n,0,10}] (* Gus Wiseman, Jun 26 2022 *)
-
concat(vector(3), Vec(x^3/(-2*x^4+x^3+4*x^2-4*x+1) + O(x^40))) \\ Colin Barker, Nov 03 2016
A350140
Nonsquarefree numbers whose prime signature has at least one odd part other the first or last.
Original entry on oeis.org
60, 84, 120, 132, 140, 150, 156, 168, 204, 220, 228, 240, 260, 264, 270, 276, 280, 294, 300, 308, 312, 315, 336, 340, 348, 364, 372, 378, 380, 408, 420, 440, 444, 456, 460, 476, 480, 490, 492, 495, 516, 520, 528, 532, 540, 552, 560, 564, 572, 580, 585, 588
Offset: 1
The terms together with their Heinz partitions begin (A-E = 10-14):
60: (3211) 276: (9211) 420: (43211)
84: (4211) 280: (43111) 440: (53111)
120: (32111) 294: (4421) 444: (C211)
132: (5211) 300: (33211) 456: (82111)
140: (4311) 308: (5411) 460: (9311)
150: (3321) 312: (62111) 476: (7411)
156: (6211) 315: (4322) 480: (3211111)
168: (42111) 336: (421111) 490: (4431)
204: (7211) 340: (7311) 492: (D211)
220: (5311) 348: (A211) 495: (5322)
228: (8211) 364: (6411) 516: (E211)
240: (321111) 372: (B211) 520: (63111)
260: (6311) 378: (42221) 528: (521111)
264: (52111) 380: (8311) 532: (8411)
270: (32221) 408: (72111) 540: (322211)
Including all nonsquarefree numbers gives
A013929, complement
A005117.
The strict instead of non-strict version is
A336568, counted by
A347548.
A version for compositions allowing strict is
A349057, counted by
A349053.
These partitions are counted by
A349796.
The complement in nonsquarefree partitions is
A350137, counted by
A349795.
A003242 = Carlitz (anti-run) compositions.
A096441 = weakly alternating 0-appended partitions.
A345164 = alternating permutations of prime indices, complement
A350251.
A345170 = partitions w/ an alternating permutation, ranked by
A345172.
A349056 = weakly alternating permutations of prime indices.
A349798 = weakly but not strongly alternating perms of prime indices.
Cf.
A000111,
A047967,
A333213,
A335448,
A344615,
A344653,
A345173,
A349054,
A349059,
A349797,
A349799.
-
Select[Range[300],!SquareFreeQ[#]&&PrimeNu[#]>1&& !And@@EvenQ/@Take[Last/@FactorInteger[#],{2,-2}]&]
A274626
a(n) = Product_{i=0..2} (2^floor((n+i)/3)-1).
Original entry on oeis.org
0, 0, 0, 1, 3, 9, 27, 63, 147, 343, 735, 1575, 3375, 6975, 14415, 29791, 60543, 123039, 250047, 504063, 1016127, 2048383, 4112895, 8258175, 16581375, 33227775, 66585855, 133432831, 267126783, 534776319, 1070599167, 2142244863, 4286583807, 8577357823, 17158905855, 34326194175, 68669157375
Offset: 0
- Tom Karzes, Posting to Math Fun Mailing List, Jul 05 2016.
-
f:=(n,d) -> mul(2^floor((n+i)/d)-1, i = 0 .. d-1);
[seq(f(n,3),n=0..40)];
-
Table[Product[(2^Floor[(n+i)/3]-1),{i,0,2}],{n,0,40}] (* Harvey P. Dale, Jun 29 2025 *)
-
a(n) = prod(i=0, 2, 2^floor((n+i)/3)-1) \\ Colin Barker, Jul 06 2016
A274635
Square array read by antidiagonals: T(m,n) (m>=0, n>=0) = (2^floor(m/2)-1)*(2^ceiling(n/2)-1).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 3, 1, 3, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 7, 3, 9, 3, 7, 0, 0, 0, 7, 7, 9, 9, 7, 7, 0, 0, 0, 15, 7, 21, 9, 21, 7, 15, 0, 0, 0, 15, 15, 21, 21, 21, 21, 15, 15, 0, 0, 0, 31, 15, 45, 21, 49, 21, 45, 15, 31, 0, 0, 0, 31, 31, 45, 45, 49, 49, 45, 45, 31, 31, 0
Offset: 0
The array begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 1, 1, 3, 3, 7, 7, 15, 15, 31, 31, 63, 63, ...
0, 1, 1, 3, 3, 7, 7, 15, 15, 31, 31, 63, 63, ...
0, 3, 3, 9, 9, 21, 21, 45, 45, 93, 93, 189, 189, ...
0, 3, 3, 9, 9, 21, 21, 45, 45, 93, 93, 189, 189, ...
0, 7, 7, 21, 21, 49, 49, 105, 105, 217, 217, 441, 441, ...
...
A274627
Product_{i=0..3} (2^floor((n+i)/4)-1).
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 9, 27, 81, 189, 441, 1029, 2401, 5145, 11025, 23625, 50625, 104625, 216225, 446865, 923521, 1876833, 3814209, 7751457, 15752961, 31755969, 64016001, 129048129, 260144641, 522337665, 1048788225, 2105834625, 4228250625, 8473082625, 16979393025, 34025371905, 68184176641
Offset: 0
- Tom Karzes, Posting to Math Fun Mailing List, Jul 05 2016.
-
f:=(n,d) -> mul(2^floor((n+i)/d)-1, i = 0 .. d-1);
[seq(f(n,4),n=0..40)];
-
a(n) = prod(i=0, 3, 2^floor((n+i)/4)-1) \\ Colin Barker, Jul 06 2016
Original entry on oeis.org
0, 0, 0, 0, 1, 4, 13, 34, 83, 188, 413, 878, 1839, 3792, 7761, 15762, 31891, 64276, 129301, 259606, 520727, 1043480, 2090009, 4184090, 8374299, 16756764, 33525789, 67067934, 134160415, 268353568, 536756257, 1073578018, 2147254307, 4294639652, 8589475877
Offset: 0
-
s[n_] := s[n] = Select[Subsets[Range[n]], Length[#] >= 2 &]; (* note size >=2 *)
a[n_] := Select[s[n], #[[2]] + #[[1]] < #[[-1]] &]
(1/2)Table[Length[a[n]], {n, 0, 18}]
Comments