cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 111 results. Next

A321144 Irregular triangle where T(n,k) is the number of divisors of n whose prime indices sum to k.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2018

Keywords

Comments

The rows are all palindromes.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
  1
  1  1
  1  0  1
  1  1  1
  1  0  0  1
  1  1  1  1
  1  0  0  0  1
  1  1  1  1
  1  0  1  0  1
  1  1  0  1  1
  1  0  0  0  0  1
  1  1  2  1  1
  1  0  0  0  0  0  1
  1  1  0  0  1  1
  1  0  1  1  0  1
  1  1  1  1  1
  1  0  0  0  0  0  0  1
  1  1  1  1  1  1
  1  0  0  0  0  0  0  0  1
  1  1  1  1  1  1
  1  0  1  0  1  0  1
  1  1  0  0  0  1  1
  1  0  0  0  0  0  0  0  0  1
  1  1  2  2  1  1
  1  0  0  1  0  0  1
  1  1  0  0  0  0  1  1
  1  0  1  0  1  0  1
  1  1  1  0  1  1  1
  1  0  0  0  0  0  0  0  0  0  1
  1  1  1  2  1  1  1
		

Crossrefs

Row lengths are A056239. Number of nonzero entries in row n is A299701(n).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
    Table[Count[Total/@primeMS/@Divisors[n],k],{n,20},{k,0,Total[primeMS[n]]}]

A325835 Number of integer partitions of 2*n having one more distinct submultiset than distinct subset-sums.

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 9, 10, 14, 22, 30, 33, 46, 52, 74, 107, 101, 123, 171, 182, 225
Offset: 0

Views

Author

Gus Wiseman, May 29 2019

Keywords

Comments

The number of submultisets of a partition is the product of its multiplicities, each plus one. A subset-sum of an integer partition is the sum of some submultiset of its parts. These are partitions with one subset-sum which is the sum of two distinct submultisets, while all others are the sum of only one submultiset.
The Heinz numbers of these partitions are given by A325802.

Examples

			The a(2) = 1 through a(8) = 14 partitions:
  (211)  (321)   (422)    (532)     (633)      (743)       (844)
         (3111)  (431)    (541)     (642)      (752)       (853)
                 (41111)  (5221)    (651)      (761)       (862)
                          (5311)    (4332)     (7322)      (871)
                          (511111)  (5331)     (7331)      (5443)
                                    (6222)     (7421)      (7441)
                                    (6411)     (7511)      (7531)
                                    (33222)    (72221)     (8332)
                                    (6111111)  (74111)     (8521)
                                               (71111111)  (8611)
                                                           (82222)
                                                           (83311)
                                                           (85111)
                                                           (811111111)
For example, the partition (7,5,3,1) has submultisets (), (1), (3), (5), (7), (3,1), (5,1), (5,3), (7,1), (7,3), (7,5), (5,3,1), (7,3,1), (7,5,1), (7,5,3), (7,5,3,1), all of which have different sums except for (5,3) and (7,1), which both sum to 8, so (7,5,3,1) is counted under a(8).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])==1+Length[Union[Total/@Subsets[#]]]&]],{n,0,20,2}]

A326021 Number of complete subsets of {1..n} with maximum n.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 23, 45, 90, 180, 359, 717, 1432, 2862, 5723, 11444, 22887, 45772, 91541, 183078, 366151, 732295, 1464583, 2929158, 5858307, 11716603, 23433196, 46866379, 93732744, 187465471, 374930922, 749861819, 1499723610
Offset: 1

Views

Author

Gus Wiseman, Jun 04 2019

Keywords

Comments

A set of positive integers summing to n is complete if every nonnegative integer up to n is the sum of some subset.

Examples

			The a(1) = 1 through a(7) = 12 subsets:
  {1}  {1,2}  {1,2,3}  {1,2,4}    {1,2,3,5}    {1,2,3,6}      {1,2,3,7}
                       {1,2,3,4}  {1,2,4,5}    {1,2,4,6}      {1,2,4,7}
                                  {1,2,3,4,5}  {1,2,3,4,6}    {1,2,3,4,7}
                                               {1,2,3,5,6}    {1,2,3,5,7}
                                               {1,2,4,5,6}    {1,2,3,6,7}
                                               {1,2,3,4,5,6}  {1,2,4,5,7}
                                                              {1,2,4,6,7}
                                                              {1,2,3,4,5,7}
                                                              {1,2,3,4,6,7}
                                                              {1,2,3,5,6,7}
                                                              {1,2,4,5,6,7}
                                                              {1,2,3,4,5,6,7}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Max@@#==n&&Union[Plus@@@Subsets[#]]==Range[0,Total[#]]&]],{n,10}]

Extensions

a(18)-a(34) from Charlie Neder, Jun 05 2019

A326022 Number of minimal complete subsets of {1..n} with maximum n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 4, 8, 8, 8, 10, 14, 25, 40, 49, 62
Offset: 1

Views

Author

Gus Wiseman, Jun 04 2019

Keywords

Comments

A set of positive integers summing to m is complete if every nonnegative integer up to m is the sum of some subset. For example, (1,2,3,6,13) is a complete set because we have:
0 = (empty sum)
1 = 1
2 = 2
3 = 3
4 = 1 + 3
5 = 2 + 3
6 = 6
7 = 6 + 1
8 = 6 + 2
9 = 6 + 3
10 = 1 + 3 + 6
11 = 2 + 3 + 6
12 = 1 + 2 + 3 + 6
and the remaining numbers 13-25 are obtained by adding 13 to each of these.

Examples

			The a(3) = 1 through a(9) = 8 subsets:
  {1,2,3}  {1,2,4}  {1,2,3,5}  {1,2,3,6}  {1,2,3,7}  {1,2,4,8}    {1,2,3,4,9}
                    {1,2,4,5}  {1,2,4,6}  {1,2,4,7}  {1,2,3,5,8}  {1,2,3,5,9}
                                                     {1,2,3,6,8}  {1,2,3,6,9}
                                                     {1,2,3,7,8}  {1,2,3,7,9}
                                                                  {1,2,4,5,9}
                                                                  {1,2,4,6,9}
                                                                  {1,2,4,7,9}
                                                                  {1,2,4,8,9}
		

Crossrefs

Programs

  • Mathematica
    fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]&/@Rest[Subsets[Complement[Union@@y,s]]],{s,y}]];
    Table[Length[fasmin[Select[Subsets[Range[n]],Max@@#==n&&Union[Plus@@@Subsets[#]]==Range[0,Total[#]]&]]],{n,10}]

A326037 Heinz numbers of uniform perfect integer partitions.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 32, 42, 64, 100, 128, 256, 512, 798, 1024, 2048, 2744, 4096, 8192, 16384, 32768, 42294, 52900, 65536
Offset: 1

Views

Author

Gus Wiseman, Jun 04 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
An integer partition of n is uniform if all parts appear with the same multiplicity, and perfect if every nonnegative integer up to n is the sum of a unique submultiset.
The enumeration of these partitions by sum is given by A089723.

Examples

			The sequence of all uniform perfect integer partitions together with their Heinz numbers begins:
      1: ()
      2: (1)
      4: (11)
      6: (21)
      8: (111)
     16: (1111)
     32: (11111)
     42: (421)
     64: (111111)
    100: (3311)
    128: (1111111)
    256: (11111111)
    512: (111111111)
    798: (8421)
   1024: (1111111111)
   2048: (11111111111)
   2744: (444111)
   4096: (111111111111)
   8192: (1111111111111)
  16384: (11111111111111)
		

Crossrefs

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    Select[Range[1000],SameQ@@Last/@FactorInteger[#]&&Sort[hwt/@Divisors[#]]==Range[0,hwt[#]]&]

Formula

Intersection of A072774 (uniform), A299702 (knapsack), and A325781 (complete).

A343943 Number of distinct possible alternating sums of permutations of the multiset of prime factors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Aug 19 2021

Keywords

Comments

First differs from A096825 at a(525) = 3, A096825(525) = 4.
First differs from A345926 at a(90) = 4, A345926(90) = 3.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. Of course, the alternating sum of prime factors is also the reverse-alternating sum of reversed prime factors.
Also the number of distinct "sums of prime factors" of divisors d|n such that bigomega(d) = bigomega(n)/2 rounded up.

Examples

			The divisors of 525 with 2 prime factors are: 15, 21, 25, 35, with prime factors {3,5}, {3,7}, {5,5}, {5,7}, with distinct sums {8,10,12}, so a(525) = 3.
		

Crossrefs

The half-length submultisets are counted by A114921.
Including all multisets of prime factors gives A305611(n) + 1.
The strict rounded version appears to be counted by A342343.
The version for prime indices instead of prime factors is A345926.
A000005 counts divisors, which add up to A000203.
A001414 adds up prime factors, row sums of A027746.
A056239 adds up prime indices, row sums of A112798.
A071321 gives the alternating sum of prime factors (reverse: A071322).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A108917 counts knapsack partitions, ranked by A299702.
A276024 and A299701 count positive subset-sums of partitions.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A334968 counts subsequence-sums of standard compositions.

Programs

  • Mathematica
    prifac[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Table[Length[Union[Total/@Subsets[prifac[n],{Ceiling[PrimeOmega[n]/2]}]]],{n,100}]
  • Python
    from sympy import factorint
    from sympy.utilities.iterables import multiset_combinations
    def A343943(n):
        fs = factorint(n)
        return len(set(sum(d) for d in multiset_combinations(fs,(sum(fs.values())+1)//2))) # Chai Wah Wu, Aug 23 2021

A347709 Number of distinct rational numbers of the form x * z / y for some factorization x * y * z = n, 1 < x <= y <= z.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 0, 1, 1, 0, 0, 3, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 4, 0, 0, 1, 2, 0, 1, 0, 1, 0, 1, 0, 4, 0, 0, 1, 1, 0, 1, 0, 3, 1, 0, 0, 4, 0, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 4, 0, 1, 1, 2, 0, 1, 0, 2, 1, 0, 0, 4, 0, 1, 0, 3, 0, 1, 0, 1, 1, 0, 0, 5
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2021

Keywords

Comments

This is also the number of distinct possible alternating products of length-3 factorizations of n, where we define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)), and where a factorization of n is a weakly increasing sequence of positive integers > 1 with product n.

Examples

			Representative factorizations for each of the a(360) = 9 alternating products:
   (2,2,90) -> 90
   (2,3,60) -> 40
   (2,4,45) -> 45/2
   (2,5,36) -> 72/5
   (2,6,30) -> 10
   (2,9,20) -> 40/9
  (2,10,18) -> 18/5
  (2,12,15) -> 5/2
   (3,8,15) -> 45/8
		

Crossrefs

Allowing factorizations of any length <= 3 gives A033273.
Positions of positive terms are A033942.
Positions of 0's are A037143.
The length-2 version is A072670.
Allowing any length gives A347460, reverse A038548.
Allowing any odd length gives A347708.
A001055 counts factorizations (strict A045778, ordered A074206).
A122179 counts length-3 factorizations.
A292886 counts knapsack factorizations, by sum A293627.
A301957 counts distinct subset-products of prime indices.
A304792 counts distinct subset-sums of partitions, positive A276024.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[altprod/@Select[facs[n],Length[#]==3&]]],{n,100}]
  • PARI
    A347709(n) = { my(rats=List([])); fordiv(n,z,my(yx=n/z); fordiv(yx, y, my(x = yx/y); if((y <= z) && (x <= y) && (x > 1), listput(rats,x*z/y)))); #Set(rats); }; \\ Antti Karttunen, Jan 29 2025

Extensions

More terms from Antti Karttunen, Jan 29 2025

A301970 Heinz numbers of integer partitions with more subset-products than subset-sums.

Original entry on oeis.org

165, 273, 325, 351, 495, 525, 561, 595, 675, 741, 765, 819, 825, 931, 1045, 1053, 1155, 1173, 1425, 1485, 1495, 1575, 1625, 1653, 1683, 1771, 1785, 1815, 1911, 2025, 2139, 2145, 2223, 2275, 2277, 2295, 2310, 2415, 2457, 2465, 2475, 2625, 2639, 2695, 2805, 2945
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). A subset-sum (or subset-product) of a multiset y is any number equal to the sum (or product) of some submultiset of y.
Numbers n such that A301957(n) > A299701(n).

Examples

			Sequence of partitions begins: (532), (642), (633), (6222), (5322), (4332), (752), (743), (33222), (862), (7322), (6422), (5332), (844), (853), (62222), (5432), (972), (8332), (53222), (963), (43322), (6333).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],With[{ptn=If[#===1,{},Join@@Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},Length[Union[Times@@@Subsets[ptn]]]>Length[Union[Plus@@@Subsets[ptn]]]]&]

A304795 Number of positive special sums of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 3, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 3, 2, 3, 3, 5, 1, 5, 1, 5, 3, 3, 3, 4, 1, 3, 3, 5, 1, 7, 1, 5, 5, 3, 1, 3, 2, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 3, 1, 3, 3, 6, 3, 7, 1, 5, 3, 5, 1, 3, 1, 3, 5, 5, 3, 7, 1, 5, 4, 3, 1, 5, 3, 3, 3, 7, 1, 5, 3, 5, 3, 3, 3, 3, 1, 5, 5, 8, 1, 7, 1, 7, 7
Offset: 1

Views

Author

Gus Wiseman, May 18 2018

Keywords

Comments

A positive special sum of y is a number n > 0 such that exactly one submultiset of y sums to n. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(36) = 4 special sums are 1, 3, 5, 6, corresponding to the submultisets (1), (21), (221), (2211), with Heinz numbers 2, 6, 18, 36.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    uqsubs[y_]:=Join@@Select[GatherBy[Union[Rest[Subsets[y]]],Total],Length[#]===1&];
    Table[Length[uqsubs[primeMS[n]]],{n,100}]
  • PARI
    up_to = 65537;
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    v056239 = vector(up_to,n,A056239(n));
    A304795(n) = { my(m=Map(),s,k=0,c); fordiv(n,d,if(!mapisdefined(m,s = v056239[d],&c), mapput(m,s,1), mapput(m,s,c+1))); sumdiv(n,d,(1==mapget(m,v056239[d])))-1; }; \\ Antti Karttunen, Jul 02 2018

Extensions

More terms from Antti Karttunen, Jul 02 2018

A316364 Number of factorizations of n into factors > 1 such that every distinct submultiset of the factors has a different average.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 5, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 6, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 8, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 6, 2, 2, 1, 9, 2, 2, 2, 5, 1, 9, 2, 3, 2, 2, 2, 10, 1, 3, 3, 5, 1, 5, 1, 5, 4
Offset: 1

Views

Author

Gus Wiseman, Jun 30 2018

Keywords

Comments

Note that such a factorization is necessarily strict.

Examples

			The a(80) = 6 factorizations are (80), (10*8), (16*5), (20*4), (40*2), (10*4*2).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],UnsameQ@@Mean/@Union[Subsets[#]]&]],{n,50}]
  • PARI
    choosebybits(v,m) = { my(s=vector(hammingweight(m)),i=j=1); while(m>0,if(m%2,s[j] = v[i];j++); i++; m >>= 1); s; };
    hasdupavgs(v) = { my(avgs=Map(), k); for(i=1,(2^(#v))-1,k = (vecsum(choosebybits(v,i))/hammingweight(i)); if(mapisdefined(avgs,k),return(i),mapput(avgs,k,i))); (0); };
    A316364(n, m=n, facs=List([])) = if(1==n, (0==hasdupavgs(Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A316364(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Sep 21 2018

Extensions

More terms from Antti Karttunen, Sep 21 2018
Previous Showing 91-100 of 111 results. Next