cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A091496 a(n) = ((5*n)!/(n!*(2*n)!))*(Gamma(1+n/2)/Gamma(1+5*n/2)).

Original entry on oeis.org

1, 16, 630, 28672, 1385670, 69206016, 3528923580, 182536110080, 9540949030470, 502682972323840, 26651569523959380, 1420217179365703680, 75998432812419471900, 4081125953526124511232, 219813190240007470094520, 11869871068877664049692672, 642409325786050322446410310
Offset: 0

Views

Author

Michael Somos, Jan 15 2004

Keywords

Comments

Let a > b be nonnegative integers. Then the ratio of factorials ((2*a + 1)*n)!*((b + 1/2)*n)!/(((a + 1/2)*n)!*((2*b + 1)*n)!*((a - b)*n)!) is an integer for all integer n >= 0. This is the case a = 2, b = 0. - Peter Bala, Aug 28 2016

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Programs

  • Mathematica
    Table[((5 n)!/(n! (2 n)!)) (Gamma[1 + n/2]/Gamma[1 + 5 n/2]), {n, 0, 14}] (* or *)
    Table[Sum[Binomial[6 n, 2 n - 2 k] Binomial[n + k - 1, k], {k, 0, n}], {n, 0, 14}] (* or *)
    Table[Sum[Binomial[5 n, k] Binomial[3 n - k - 1, 2 n - k], {k, 0, 2 n}], {n, 0, 14}] (* Michael De Vlieger, Aug 28 2016 *)
  • PARI
    a(n)=16^n*sum(i=0,2*n,binomial(i-1+(n-1)/2,i))
    
  • Python
    from math import factorial
    from sympy import factorial2
    def A091496(n): return int((factorial(5*n)*factorial2(n)<<(n<<1))//(factorial(n)*factorial(n<<1)*factorial2(5*n))) # Chai Wah Wu, Aug 10 2023

Formula

n*(n-1)*(2*n-1)*(2*n-3)*a(n) = 20*(5*n-1)*(5*n-3)*(5*n-7)*(5*n-9)*a(n-2).
From Peter Bala, Aug 22 2016: (Start)
a(n) = Sum_{k = 0..2*n} binomial(5*n, k)*binomial(3*n - k - 1, 2*n - k).
a(n) = Sum_{k = 0..n} binomial(6*n, 2*n - 2*k)*binomial(n + k - 1, k).
a(n) ~ 5^(5*n/2)/(2*sqrt(Pi*n)).
O.g.f. A(x) = Hypergeom([9/10, 7/10, 3/10, 1/10], [3/4, 1/2, 1/4], 3125*x^2) + 16*x*Hypergeom([7/5, 6/5, 4/5, 3/5], [5/4, 3/2, 3/4], 3125*x^2).
a(n) = [x^(2*n)] H(x)^n, where H(x) = (1 + x)^5/(1 - x). Cf. A061162 and A262732.
It follows that the o.g.f. for this sequence is the diagonal of the bivariate rational generating function 1/2*( 1/(1 - t*H(sqrt(x))) + 1/(1 - t*H(-sqrt(x))) ) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197.
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + 16*x + 443*x^2 + 15280*x^3 + 591998*x^4 + 24635360*x^5 + 1075884051*x^6 + ... has integer coefficients.
Let F(x) = 1/x*Series_Reversion( x*sqrt((1 - x)/(1 + x)^5) ) and put G(x) = 1 + x*d/dx(log(F(x))). Then A(x) satisfies A(x^2) = (G(x) + G(-x))/2. (End)
O.g.f. denoted by h(x), satisfies algebraic equation of order 10: -800000*x^4 + 81*x^2 - 25000*x^3*h(x) - 25*x^2*(1400000*x^2 - 123)*h(x)^2 + 8*x*(178125*x^2 - 32)*h(x)^3 + (-31250000*x^4 + 22500*x^2 + 4)*h(x)^4 + 32*x*(137500*x^2 - 19)*(3125*x^2 - 1)*h(x)^5 + 12*(3125*x^2 - 1)*(3125*x^2 + 3)*h(x)^6 + 800*x*(3125*x^2 - 1)^2*h(x)^7 + 96*(3125*x^2 - 1)^2*h(x)^8 + 64*(3125*x^2 - 1)^3*h(x)^10 = 0. - Karol A. Penson, Apr 30 2025

A352373 a(n) = [x^n] ( 1/((1 - x)^2*(1 - x^2)) )^n for n >= 1.

Original entry on oeis.org

2, 12, 74, 484, 3252, 22260, 154352, 1080612, 7621526, 54071512, 385454940, 2758690636, 19810063392, 142662737376, 1029931873824, 7451492628260, 54013574117106, 392188079586468, 2851934621212598, 20766924805302984, 151403389181347160, 1105047483656041080
Offset: 1

Views

Author

Peter Bala, Mar 14 2022

Keywords

Comments

Suppose n identical objects are distributed in 3*n labeled baskets, 2*n colored white and n colored black. White baskets can contain any number of objects (or be empty), while black baskets must contain an even number of objects (or be empty). a(n) is the number of distinct possible distributions.
Number of nonnegative integer solutions to n = x_1 + x_2 + ... + x_(2*n) + 2*y_1 + 2*y_2 + ... + 2*y_n.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k.
Calculation suggests that, in fact, stronger congruences may hold.
Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k.
More generally, let r and s be integers and define a sequence (a(r,s;n))n>=1 by a(r,s;n) = [x^n] ( (1 + x)^r * (1 - x)^s )^n.
Conjecture: for each r and s the above supercongruences hold for the sequence (a(r,s;n))n>=1.
The present sequence is the case r = -1 and s = -3. Other cases include A000984 (r = 2, s = 0), A001700 with offset 1 (r = 0, s = -1), A002003 (r = 1, s = -1), A091527 (r = 3, s = -1), A119259 (r = 2, s = -1), A156894 (r = 1, s = -2), A165817 (r = 0, s = -2), A234839 (r = 1, s = 2), A348410 (r = -1, s = -2) and A351857 (r = -2, s = -4).

Examples

			n = 2: 12 distributions of 2 identical objects in 4 white and 2 black baskets
             White         Black
   1)   (0) (0) (0) (0)   [2] [0]
   2)   (0) (0) (0) (0)   [0] [2]
   3)   (2) (0) (0) (0)   [0] [0]
   4)   (0) (2) (0) (0)   [0] [0]
   5)   (0) (0) (2) (0)   [0] [0]
   6)   (0) (0) (0) (2)   [0] [0]
   7)   (1) (1) (0) (0)   [0] [0]
   8)   (1) (0) (1) (0)   [0] [0]
   9)   (1) (0) (0) (1)   [0] [0]
  10)   (0) (1) (1) (0)   [0] [0]
  11)   (0) (1) (0) (1)   [0] [0]
  12)   (0) (0) (1) (1)   [0] [0]
Examples of supercongruences:
a(7) - a(1) = 154352 - 2 = 2*(3^2)*(5^2)*(7^3) == 0 (mod 7^3);
a(2*11) - a(2) = 1105047483656041080 - 12 = (2^2)*3*(11^3)*13*101*103*2441* 209581 == 0 (mod 11^3).
		

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Programs

  • Maple
    seq(add( binomial(3*n-2*k-1,n-2*k)*binomial(n+k-1,k), k = 0..floor(n/2)), n = 1..25);
  • Mathematica
    nterms=25;Table[Sum[Binomial[3n-2k-1,n-2k]Binomial[n+k-1,k],{k,0,Floor[n/2]}],{n,nterms}] (* Paolo Xausa, Apr 10 2022 *)

Formula

a(n) = Sum_{k = 0..floor(n/2)} binomial(3*n-2*k-1,n-2*k)*binomial(n+k-1,k).
a(n) = Sum_{k = 0..n} (-1)^k*binomial(4*n-k-1,n-k)*binomial(n+k-1,k).
a(n) = binomial(4*n-1,n)*hypergeom([n, -n], [1-4*n], -1).
48*n*(n-1)*(3*n-1)*(3*n-2)*(93*n^3-434*n^2+668*n-339)*a(n) = 12*(n-1)*(21762*n^6-134199*n^5+323805*n^4-386685*n^3+237728*n^2-70336*n+7680)*a(n-1) + 5*(5*n-9)*(5*n-8)*(5*n-7)*(5*n-6)*(93*n^3-155*n^2+79*n-12)*a(n-2) with a(1) = 2 and a(2) = 12.
The o.g.f. A(x) = 2*x + 12*x^2 + 74*x^3 + ... is the diagonal of the bivariate rational function x*t/(1 - t/((1 - x)^2*(1 - x^2))) and hence is an algebraic function over Q(x) by Stanley 1999, Theorem 6.33, p. 197.
A(x) = x*d/dx(log(F(x))), where F(x) = (1/x)*Series_Reversion( x*(1 - x)^2*(1 - x^2) ).
a(n) ~ sqrt(4 + sqrt(6)) * (13/4 + 31*sqrt(6)/18)^n / (2*sqrt(5*Pi*n)). - Vaclav Kotesovec, Mar 15 2022

A364513 Square array read by ascending antidiagonals: T(n,k) = [x^k] (1 - x)^(2*k) * Legendre_P(n*k-1, (1 + x)/(1 - x)) for n, k >= 0.

Original entry on oeis.org

1, 1, -2, 1, -2, 6, 1, 0, 0, -20, 1, 4, 0, 16, 70, 1, 10, 126, 0, 0, -252, 1, 18, 594, 4900, 0, -252, 924, 1, 28, 1716, 44200, 209950, 0, 0, -3432, 1, 40, 3900, 205920, 3640210, 9513504, 0, 4800, 12870, 1, 54, 7650, 685216, 27386100, 317678760, 447103440, 0, 0, -48620, 1, 70, 13566, 1847560, 133501500, 3861534768, 28782923400, 21558808128, 0, -100100, 184756
Offset: 0

Views

Author

Peter Bala, Jul 31 2023

Keywords

Comments

Compare with A364303.
Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L), where c_1 + ... + c_K = d_1 + ... + d_L, we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1 (see A295431). Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.
Each row of the present table is an integral factorial ratio sequence of height 2. It is usually assumed that the c's and d's are integers but here some of the c's and d's are half-integers. See A276098 and the cross references there for further examples of this type.

Examples

			 Square array begins:
 n\k|  0    1       2         3            4              5
  - + - - - - - - - - - - - - - - - - - - - - - - - - - - -
  0 |  1   -2       6       -20           70           -252   ... (see A000984)
  1 |  1   -2       0        16            0           -252   ...  A364514
  2 |  1    0       0         0            0              0
  3 |  1    4     126      4900       209950        9513504   ...  (1/3)*A352651
  4 |  1   10     594     44200      3640210      317678760   ...  A364515
  5 |  1   18    1716    205920     27386100     3861534768   ...  (3/5)*A352652
  6 |  1   28    3900    685216    133501500    27583083528   ...  A364516
  7 |  1   40    7650   1847560    494944450   140625140040   ...  A364517
		

Crossrefs

Cf. A000984 (row 0 unsigned), A276098, A295431, A352651 (3*row 3), A352652 ((5/3)*row 5), A364303, A364506, A364509, A364514 (row 1), A364515 (row 4), A364516 (row 6), A364517 (row 7).

Programs

  • Maple
    T(n,k) := coeff(series( (1 - x)^(2*k) * LegendreP(n*k-1, (1 + x)/(1 - x)), x, 11), x, k):
    # display as a square array
    seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
    # display as a sequence
    seq(seq(T(n-k, k), k = 0..n), n = 0..10);

Formula

T(n,k) = Sum_{i = 0..k} binomial(n*k-1, k-i)^2 * binomial((n-2)*k+i-2, i).
T(n,1) = 1 for all n and for n >= 2 and k >= 1, T(n,k) = binomial((k*n-1), k)^2 * hypergeom([a, b, b], [1 + a - b, 1 + a - b], 1), where a = (n - 2)*k - 1 and b = -k.
For n >= 3 and k >= 1, T(n,k) = ((n*k - 1))! * ( ((n+2)*k - 1)/2 )! * ( ((n-2)*k - 1)/2 )! / ( k!^2 * ((n-2)*k - 1)! * ((n*k - 1)/2)!^2 ) by Dixon's 3F2 summation theorem, where fractional factorials are defined in terms of the gamma function.
For n >= 3 and k >= 1, T(n,k) = (n-2)/n * ((n+2)*k)!*(n*k/2)!^2 / ( ((n+2)*k/2)! * (n*k)! * ((n-2)*k/2)! * k!^2 ).
The central binomial numbers A000984, row 1 unsigned, satisfy the supercongruences A000984(n*p^r) == A000984(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r. We conjecture that each row sequence of the table satisfies the same supercongruences.

A352651 a(n) = ( binomial(5*n,2*n)*binomial(5*n/2,2*n)*binomial(2*n,n)^2 ) / binomial(5*n/2,n)^2.

Original entry on oeis.org

1, 12, 378, 14700, 629850, 28540512, 1341310320, 64676424384, 3178603964250, 158529793422000, 7999466594747628, 407514796591710600, 20924507330066816112, 1081581197431986720000, 56225684939117297889600, 2937292879652230377427200, 154108110471294720105987930
Offset: 0

Views

Author

Peter Bala, Mar 25 2022

Keywords

Comments

We write x! as shorthand for Gamma(x+1) and binomial(x,y) as shorthand for x!/(y!*(x-y)!) = Gamma(x+1)/(Gamma(y+1)*Gamma(x-y+1)). Given two sequences of numbers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L) where c_1 + ... + c_K = d_1 + ... + d_L we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1. Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.
It is usually assumed that the c's and d's are integers but here we allow for some of the c's and d's to be rational numbers. See A276098 and the cross references for further examples of this type.
Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k. The case n = k = 1 is easily proved.
More generally, for an integer N not equal to 0 or 1, the height 2 factorial ratio sequence whose n-th term is given by ( binomial(N*n,2*n)* binomial(N*n/2,2*n)* binomial(2*n,n)^2 )/binomial(N*n/2,n)^2 is conjectured to be integral and satisfy the same supercongruences. This is the case N = 5. See A352652 (N = 7)

Examples

			Examples of supercongruences:
a(2*7) - a(2) = 56225684939117297889600 - 378 = 2*(3^3)*(7^4)*6553*411473* 160830097 == 0 (mod 7^4).
a(13) - a(1) = 1081581197431986720000 - 12 = (2^2)*3*(13^3)* 41024927834622467 == 0 (mod 13^3)
		

Crossrefs

Programs

  • Maple
    a := n -> if n = 0 then 1 elif n = 1 then 12 else
    5*(3*n - 2)*(3*n - 4)*(5*n - 1)*(5*n - 3)*(5*n - 7)*(5*n - 9)/(n^2*(n - 1)^2*(3*n - 1)*(3*n - 5))*a(n-2) end if:
    seq(a(n), n = 0..20);
  • Python
    from math import factorial
    from sympy import factorial2
    def A352651(n): return int(factorial(5*n)*factorial2(3*n)**2//factorial(3*n)//factorial2(5*n)//factorial(n)**2//factorial2(n)) # Chai Wah Wu, Aug 08 2023

Formula

a(n) = (5*n)!*(3*n/2)!^2/( (3*n)!*(5*n/2)!*n!^2*(n/2)! ).
a(n) = 3*Sum_{k = 0..n} (-1)^(n+k)*binomial(5*n,n-k)*binomial(3*n+k-1,k)^2 for n >= 1 (this formula shows the sequence is integral).
a(n) = 3*Sum_{k = 0..n} binomial(2*n-k-2,n-k)*binomial(3*n-1,k)^2 for n >= 1.
a(n) = 3 * [x^n] ( (1 - x)^(2*n) * P(3*n-1,(1 + x)/(1 - x)) ) for n >= 1, where P(n,x) denotes the n-th Legendre polynomial.
a(n) ~ (sqrt(3)/Pi)*(5^n)^(5/2)*( 1/(2*n) - 2/(15*n^2) + 4/(225*n^3) + O(1/n^4) ).
a(n) = A008978(n)/A275652(n).
a(n) = binomial(3*n/2,n)*A262732(n).
a(n) = 3*(-1)^n*binomial(5*n,n)*hypergeom([-n, 3*n, 3*n], [1, 4*n+1], 1) for n >= 1.
a(n) = 5*(3*n-2)*(3*n-4)*(5*n-1)*(5*n-3)*(5*n-7)*(5*n-9)/(n^2*(n-1)^2*(3*n- 1)*(3*n-5)) * a(n-2) with a(0) = 1 and a(1) = 12.
a(p) == 12 (mod p^3) for prime p >= 5.
O.g.f.: A(x) = hypergeom([1/10, 3/10, 7/10, 9/10, 1/3, 2/3], [1/6, 5/6, 1/2, 1/2, 1], (5^5)*x^2) + 12*x*hypergeom([3/5, 4/5, 6/5, 7/5, 5/6, 7/6], [2/3, 4/3, 3/2, 3/2, 1], (5^5)*x^2).

A352652 a(n) = ( binomial(7*n,2*n)*binomial(7*n/2,2*n)*binomial(2*n,n)^2 ) / binomial(7*n/2,n)^2.

Original entry on oeis.org

1, 30, 2860, 343200, 45643500, 6435891280, 942422020540, 141696569678400, 21724714133822700, 3381208130986900500, 532553441617598475360, 84695057996350934903680, 13578009523892192555221500, 2191530567314796197691108600, 355765014009052303028935320000
Offset: 0

Views

Author

Peter Bala, Apr 03 2022

Keywords

Comments

We write x! as shorthand for Gamma(x+1) and binomial(x,y) as shorthand for x!/(y!*(x-y)!) = Gamma(x+1)/(Gamma(y+1)*Gamma(x-y+1)).
Given two sequences of numbers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L) where c_1 + ... + c_K = d_1 + ... + d_L we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1. Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2. Usually, it is assumed that the c's and d's are integers but here we allow for some of the c's and d's to be rational numbers. See A276098 and the cross references for further examples of factorial ratios of this type.
Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k. The case n = k = 1 is easily proved.

Examples

			Examples of supercongruences:
a(11) - a(1) = 84695057996350934903680 - 30 = 2*(5^2)*(11^3)*23*593* 3671*5693*4464799 == 0 (mod 11^3)
a(2*7) - a(2) = 355765014009052303028935320000 - 2860 = (2^2)*5*(7^3)*11* 269*3307*375101*14129010228023 == 0 (mod 7^3)
		

Crossrefs

Programs

  • Maple
    a := n -> if n = 0 then 1 elif n = 1 then 30 else
    7*(5*n-2)*(5*n-4)*(5*n-6)*(5*n-8)*(7*n-1)*(7*n-3)*(7*n-5)*(7*n-9)*(7*n-11)*(7*n-13)/(3*n^2*(n-1)^2*(3*n-2)*(3*n-4)*(5*n-1)*(5*n- 3)*(5*n -7)*(5*n-9)) *a(n-2) end if:
    seq(a(n), n = 0..20);
  • Python
    from math import factorial
    from sympy import factorial2
    def A352652(n): return int(factorial(7*n)*factorial2(5*n)**2//factorial(5*n)//factorial2(7*n)//factorial2(3*n)//factorial(n)**2) # Chai Wah Wu, Aug 08 2023

Formula

a(n) = (5/3)*Sum_{k = 0..n} (-1)^(n+k)*binomial(7*n,n-k)*binomial(5*n+k-1,k)^2 for n >= 1 (this formula shows 3*a(n) is integral; how to show a(n) is integral?).
a(n) = (5/3)*Sum_{k = 0..n} binomial(4*n-k-2,n-k)*binomial(5*n-1,k)^2 for n >= 1.
a(n) = (7*n)!*(5*n/2)!^2/((5*n)!*(7*n/2)!*(3*n/2)!*n!^2!).
a(n) = (5/3) * [x^n] ( (1 - x)^(2*n) * P(5*n-1,(1 + x)/(1 - x)) ) for n >= 1, where P(n,x) denotes the n-th Legendre polynomial.
a(n) = (5/3)*(-1)^n*binomial(7*n,n)*hypergeom([-n, 5*n, 5*n], [1, 6*n+1], 1) for n >= 1.
a(n) ~ sqrt(15)/Pi * 7^(7*n/2)/3^(3*n/2) * ( 1/(6*n) - 29/(945*n^2) + 841/(297675*n^3) + O(1/n^4) ).
a(n) = 7*(5*n-2)*(5*n-4)*(5*n-6)*(5*n-8)*(7*n-1)*(7*n-3)*(7*n-5)*(7*n-9)*(7*n-11)*(7*n-13)/(3*n^2*(n-1)^2*(3*n-2)*(3*n-4)*(5*n-1)*(5*n- 3)*(5*n -7)*(5*n-9)) * a(n-2) with a(0) = 1 and a(1) = 30.
a(n)*A275654(n) = (7*n)!/(n!^4*(3*n)!) = A071549(n)/A006480(n).
a(p) == 30 (mod p^3) for all primes p >= 5.

A365025 Square array read by antidiagonals: T(n, k) := (k/2)!/k! * ((2*n+1)*k)! * ((2*n+1/2)*k)! / ( (n*k)!^2 * ((n+1/2)*k)!^2 ) for n, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 126, 300, 1, 1, 1716, 79380, 11440, 1, 1, 24310, 20612592, 65523780, 485100, 1, 1, 352716, 5318784900, 328206021000, 60634147860, 21841260, 1, 1, 5200300, 1368494343216, 1552041334596844, 5876083665270000, 59774707082376, 1022041020, 1
Offset: 0

Views

Author

Peter Bala, Aug 17 2023

Keywords

Comments

Fractional factorials are defined in terms of the gamma function; for example, ((2*n+1/2)*k)! = Gamma(1 + (2*n+1/2)*k).
Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L) where c_1 + ... + c_K = d_1 + ... + d_L we can define the factorial ratio sequence u_k(c, d) = (c_1*k)!*(c_2*k)!* ... *(c_K*k)!/ ( (d_1*k)!*(d_2*k)!* ... *(d_L*k)! ) and ask whether it is integral for all k >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1. Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.
It is usually assumed that the c's and d's are integers but here we allow for some of the c's and d's to be half-integers. See A276098 for further examples of this type.
Each row sequence of the present table is an integral factorial ratio sequence of height 2.
Conjecture: each row sequence of the table satisfies the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r.

Examples

			 Square array begins:
 n\k|  0      1               2                    3                      4
  - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  0 |  1      1               1                    1                      1  ...
  1 |  1     10             300                11440                 485100  ...
  2 |  1    126           79380             65523780            60634147860  ...
  3 |  1   1716        20612592         328206021000       5876083665270000  ...
  4 |  1  24310      5318784900     1552041334596844  510031828417402714500  ...
  5 |  1 352716   1368494343216  7108360304262169344 ...
		

Crossrefs

Cf. A275652 (row 1), A365026 (row 2), A365027 (row 3).

Programs

  • Maple
    # display as a square array
    T(n, k) := (k/2)!/k! * ((2*n+1)*k)! * ((2*n+1/2)*k)! / ( (n*k)!^2 * ((n+1/2)*k)!^2 ):
    seq( print(seq(simplify(T(n, k)), k = 0..10)), n = 0..10);
    # display as a sequence
    seq( seq(simplify(T(n-k, k)), k = 0..n), n = 0..10);
  • Python
    from itertools import count, islice
    from math import factorial
    from sympy import factorial2
    def A365025_T(n,k): return int(factorial2(k)*factorial(r:=((m:=n<<1)+1)*k)*factorial2(((m<<1)+1)*k)//((factorial(n*k)*factorial2(r))**2*factorial(k)))
    def A365025_gen(): # generator of terms
        for n in count(0):
            yield from (A365025_T(n-k,k) for k in range(n+1))
    A365025_list = list(islice(A365025_gen(),20)) # Chai Wah Wu, Aug 24 2023

Formula

T(n,k) = Sum_{j = 0..n*k} binomial((2*n+1)*k, n*k-j)^2 * binomial(k+j-1, j).
T(n,k) = binomial((2*n+1)*k,n*k)^2 * hypergeom([k, -n*k, -n*k], [1 + (n+1)*k, 1 + (n+1)*k], 1) = (k/2)!/k! * ((2*n+1)*k)! * ((2*n+1/2)*k)! / ( (n*k)!^2 * ((n+1/2)*k)!^2 ) by Dixon's 3F2 summation theorem.
T(n,k) = [x^(n*k)] ( (1 - x)^(2*n*k) * Legendre_P((2*n+1)*k, (1 + x)/(1 - x)) ).
T(n,k) = k!!*((2*n+1)*k)!*((4*n+1)*k)!!/(k!*((n*k)!*((2*n+1)*k)!!)^2). - Chai Wah Wu, Aug 24 2023

A364172 a(n) = (6*n)!*(n/3)!/((3*n)!*(2*n)!*(4*n/3)!).

Original entry on oeis.org

1, 45, 6237, 1021020, 178719453, 32427545670, 6016814703900, 1133540594837892, 215925912619400925, 41477110789150966020, 8019784929635201045862, 1558875476359831844951100, 304331361887290342345862940, 59629409730107012112361325820
Offset: 0

Views

Author

Peter Bala, Jul 12 2023

Keywords

Comments

Fractional factorials are defined in terms of the gamma function; for example, (n/3)! := Gamma(n/3 + 1).
Given two sequences of numbers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L) where c_1 + ... + c_K = d_1 + ... + d_L we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1. For a list of the 52 sporadic integral factorial ratio sequences see A295431.
It is usually assumed that the c's and d's are integers but here we allow for some of the c's and d's to be rational numbers.
A295437, defined by A295437(n) = (18*n)!*n! / ((9*n)!*(6*n)!*(4*n)!) is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin (see Bober, Table 2, Entry 7). Here we are essentially considering the sequence {A295437(n/3) : n >= 0}. This sequence is only conjecturally an integer sequence.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.

Crossrefs

Programs

  • Maple
    seq( simplify((6*n)!*(n/3)!/((3*n)!*(2*n)!*(4*n/3)!)), n = 0..15);
  • Mathematica
    Table[Product[36*(6*k - 5)*(6*k - 1)/(k*(3*k + n)), {k, 1, n}], {n, 0, 20}] (*  Vaclav Kotesovec, Jul 13 2023 *)

Formula

a(n) ~ 2^(4*n/3 - 3/2) * 3^(4*n) / sqrt(Pi*n). - Vaclav Kotesovec, Jul 13 2023
a(n) = 5832*(6*n - 1)*(6*n - 5)*(6*n - 7)*(6*n - 11)*(6*n - 13)*(6*n - 17)/(n*(n - 1)*(n - 2)*(2*n - 3)*(4*n - 3)*(4*n - 9))*a(n-3) for n >= 3 with a(0) = 1, a(1) = 45 and a(2) = 6237.

A364518 Square array read by ascending antidiagonals: T(n,k) = [x^(2*k)] ( (1 + x)^(n+2)/(1 - x)^(n-2) )^k for n, k >= 0.

Original entry on oeis.org

1, 1, -2, 1, 0, 6, 1, 6, -10, -20, 1, 16, 70, 0, 70, 1, 30, 630, 924, 198, -252, 1, 48, 2310, 28672, 12870, 0, 924, 1, 70, 6006, 204204, 1385670, 184756, -4420, -3432, 1, 96, 12870, 860160, 19122246, 69206016, 2704156, 0, 12870, 1, 126, 24310, 2704156, 130378950, 1848483780, 3528923580, 40116600, 104006, -48620
Offset: 0

Views

Author

Peter Bala, Aug 07 2023

Keywords

Comments

Compare with A364303 and A364519.
Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L), where c_1 + ... + c_K = d_1 + ... + d_L, we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1 (see A295431). Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.
Each row of the present table is an integral factorial ratio sequence of height 1. It is usually assumed that the c's and d's are integers but here some of the c's and d's are half-integers. See A276098 and the cross references there for further examples of this type.
It is known that the unsigned version of row 0 (the central binomial numbers A000984) and row 2 satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r. We conjecture that all the row sequences of the table satisfy the same supercongruences.

Examples

			 Square array begins:
 n\k|  0   1      2        3           4             5
  - + - - - - - - - - - - - - - - - - - - - - - - - - -
  0 |  1  -2      6      -20          70          -252   ... see A000984
  1 |  1   0    -10        0         198             0   ... see A211419
  2 |  1   6     70      924       12870        184756   ... A001448
  3 |  1  16    630    28672     1385670      69206016   ... A091496
  4 |  1  30   2310   204204    19122246    1848483780   ... A061162
  5 |  1  48   6006   860160   130378950   20392706048   ... A276098
  6 |  1  70  12870  2704156   601080390  137846528820   ... A001448 bisected
  7 |  1  96  24310  7028736  2149374150  678057476096   ... A276099
		

Crossrefs

Cf. A000984 (row 0 unsigned), A211419 (row 1 unsigned without 0's), A001448 (row 2), A091496 (row 3), A061162 (row 4), A276098 (row 5), A001448 bisected (row 6), A276099 (row 7).

Programs

  • Maple
    T(n,k) = add( binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j), j = 0..2*k):
    # display as a square array
    seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
    # display as a sequence
    seq(seq(T(n-k, k), k = 0..n), n = 0..10);
  • PARI
    T(n,k) = sum(j = 0, 2*k, binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j));
    lista(nn) = for( n=0, nn, for (k=0, n, print1(T(n-k, k), ", "))); \\ Michel Marcus, Aug 13 2023

Formula

T(n,k) = Sum_{j = 0..2*k} binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j).
T(2,k) = binomial(4*k,2*k).
For n >= 3, T(n,k) = binomial(n*k-1,2*k) * hypergeom([-(n+2)*k, -2*k], [1 - n*k], -1) except when (n,k) = (3,1).
For n >= 2, T(n,k) = ((n+2)*k)!*((n-2)*k/2)!/(((n+2)*k/2)!*((n-2)*k)!*(2*k)!) by Kummer's Theorem.
T(n,k) = [x^k] (1 - x)^(2*k) * Chebyshev_T(n*k, (1 + x)/(1 - x)).
T(n,k) = Sum_{j = 0..k} binomial(2*n*k, 2*j)*binomial((n-1)*k-j-1, k-j).
For n >= 3, T(n,k) = binomial((n-1)*k-1,k) * hypergeom([-n*k, -k, -n*k + 1/2], [1 - (n-1)*k, 1/2], 1).
The row generating functions are algebraic functions over the field of rational functions Q(x).

A364519 Square array read by ascending antidiagonals: T(n,k) = [x^(3*k)] ( (1 + x)^(n+3)/(1 - x)^(n-3) )^k for n, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, -4, -20, 1, 0, 28, 0, 1, 20, -84, -220, 924, 1, 64, 924, 0, 1820, 0, 1, 140, 12012, 48620, 16796, -15504, -48620, 1, 256, 60060, 2621440, 2704156, 0, 134596, 0, 1, 420, 204204, 29745716, 608435100, 155117520, -3801900, -1184040, 2704156, 1, 640, 554268, 187432960, 15628090140, 146028888064, 9075135300, 0, 10518300, 0
Offset: 0

Views

Author

Peter Bala, Aug 07 2023

Keywords

Comments

Compare with A364303 and A364518.
Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L), where c_1 + ... + c_K = d_1 + ... + d_L, we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1 (see A295431).
Each row of the present table is an integral factorial ratio sequence of height 1. It is usually assumed that the c's and d's are integers but here some of the c's and d's are half-integers. See A276098 and the cross references there for further examples of this type.
It is known that A005810, the unsigned version of row 1, satisfies the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r. We conjecture that each row sequence of the table satisfies the same supercongruences.

Examples

			Square array begins:
 n\k| 0    1       2          3             4                5
  - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  0 | 1    0     -20          0           924                0  ... see A066802
  1 | 1   -4      28       -220          1820           -15504  ... see A005810
  2 | 1    0     -84          0         16796                0
  3 | 1   20     924      48620       2704156        155117520  ... A066802
  4 | 1   64   12012    2621440     608435100     146028888064  ... A364520
  5 | 1  140   60060   29745716   15628090140    8480843582640  ... A211420
		

Crossrefs

Cf. A066802 (row 3, also row 0 unsigned and without 0's), A005810 (row 1 unsigned), A364520 (row 4), A211420 (row 5).

Programs

  • Maple
    T(n,k) := add( binomial((n+3)*k, j)*binomial(n*k-j-1, 3*k-j), j = 0..3*k):
    # display as a square array
    seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
    # display as a sequence
    seq(seq(T(n-k, k), k = 0..n), n = 0..10);
  • PARI
    T(n,k) = sum(j = 0, 3*k, binomial((n+3)*k, j)*binomial(n*k-j-1, 3*k-j));
    lista(nn) = for( n=0, nn, for (k=0, n, print1(T(n-k, k), ", "))); \\ Michel Marcus, Aug 13 2023

Formula

T(n,k) = Sum_{j = 0..3*k} binomial((n+3)*k, j)*binomial(n*k-j-1, 3*k-j).
For n >= 3, T(n,k) = binomial(n*k-1,3*k) * hypergeom([-(n+3)*k, -3*k], [1 - n*k], -1) = ((n+3)*k)!*((n-3)*k/2)!/(((n+3)*k/2)!*((n-3)*k)!*(3*k)!) by Kummer's Theorem.
The row generating functions are algebraic functions over the field of rational functions Q(x).

A364520 a(n) = (7*n)!*(n/2)!/((7*n/2)!*(n)!*(3*n)!).

Original entry on oeis.org

1, 64, 12012, 2621440, 608435100, 146028888064, 35794148650260, 8901646138474496, 2237242000722428700, 566823049100850626560, 144520856111821003326512, 37036782455383679028953088, 9531607276865293630675462980, 2461693334077582876433071472640
Offset: 0

Views

Author

Peter Bala, Aug 09 2023

Keywords

Comments

Row 4 of A364519.

Crossrefs

Programs

  • Maple
    seq( simplify((7*n)!*(n/2)!/((7*n/2)!*(n)!*(3*n)!)),  n = 0..15);
  • Mathematica
    A364520[n_]:=(7n)!(n/2)!/((7n/2)!n!(3n)!);Array[A364520,15,0] (* Paolo Xausa, Oct 05 2023 *)
  • Python
    from math import factorial
    from sympy import factorial2
    def A364520(n): return int((factorial(7*n)*factorial2(n)<<(3*n))//(factorial2(7*n)*factorial(n)*factorial(3*n))) # Chai Wah Wu, Aug 13 2023

Formula

a(n) = [x^(3*n)] ( (1 + x)^7/(1 - x) )^n.
a(n) = Sum_{j = 0..3*n} binomial(7*n, j)*binomial(4*n-j-1, 3*n-j).
a(n) = binomial(4*n-1, 3*n) * hypergeom([-7*n, -3*n], [1 - 4*n], -1) for n >= 2.
a(n) ~ c^n * 1/sqrt(6*Pi*n) where c = (14/3)^3*sqrt(7).
P-recursive: a(n) = 448*(7*n-1)*(7*n-3)*(7*n-5)*(7*n-9)*(7*n-11)*(7*n-13)/(3*n*(3*n-1)*(3*n-2)*(3*n-3)*(3*n-4)*(3*n-5)) * a(n-2) with a(0) = 1 and a(1) = 64.
The generating function is an algebraic function over the field of rational functions Q(x).
Previous Showing 11-20 of 20 results.