cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A317882 Number of free pure achiral multifunctions (with empty expressions allowed) with one atom and n positions.

Original entry on oeis.org

1, 1, 2, 5, 12, 31, 79, 211, 564, 1543, 4259, 11899, 33526, 95272, 272544, 784598, 2270888, 6604900, 19293793, 56581857, 166523462, 491674696, 1455996925, 4323328548, 12869353254, 38396655023, 114803257039, 343932660450, 1032266513328, 3103532577722
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Comments

A free pure achiral multifunction (with empty expressions allowed) (AME) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g, ..., g] where h and g are AMEs. The number of positions in an AME is the number of brackets [...] plus the number of o's.
Also the number of achiral Mathematica expressions with one atom and n positions.

Examples

			The a(5) = 12 AMEs:
  o[o[o]]
  o[o][o]
  o[o[][]]
  o[o,o,o]
  o[][o[]]
  o[][o,o]
  o[][][o]
  o[o[]][]
  o[o,o][]
  o[][o][]
  o[o][][]
  o[][][][]
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n==1,1,Sum[a[k]*If[k==n-1,1,Sum[a[d],{d,Divisors[n-k-1]}]],{k,n-1}]];
    Array[a,12]
  • PARI
    seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*(1 + sum(k=1, n-2, subst(p + O(x^(n\k+1)), x, x^k)) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
    
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=v[n-1] + sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, v[d]))); v} \\ Andrew Howroyd, Aug 19 2018

Formula

a(1) = 1; a(n > 1) = a(n - 1) + Sum_{0 < k < n - 1} a(k) * Sum_{d|(n - k - 1)} a(d).

Extensions

Terms a(13) and beyond from Andrew Howroyd, Aug 19 2018

A317883 Number of free pure achiral multifunctions with one atom and n positions.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 10, 17, 37, 70, 150, 299, 634, 1311, 2786, 5879, 12584, 26904, 58005, 125242, 271819, 591297, 1290976, 2825170, 6199964, 13635749, 30057649, 66386206, 146903289, 325637240, 723024160, 1607805207, 3580476340, 7984266625, 17827226469
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Comments

A free pure achiral multifunction (PAM) is either (case 1) the leaf symbol "o", or (case 2) a nonempty expression of the form h[g, ..., g] where h and g are PAMs. The number of positions in a PAM is the number of brackets [...] plus the number of o's.

Examples

			The a(7) = 10 PAMs:
  o[o[o[o]]]
  o[o[o][o]]
  o[o][o[o]]
  o[o[o]][o]
  o[o][o][o]
  o[o[o,o,o]]
  o[o][o,o,o]
  o[o,o][o,o]
  o[o,o,o][o]
  o[o,o,o,o,o]
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n==1,1,Sum[a[k]*Sum[a[d],{d,Divisors[n-k-1]}],{k,n-2}]];
    Array[a,12]
  • PARI
    seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*sum(k=1, n-2, subst(p + O(x^(n\k+1)), x, x^k) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
    
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, v[d]))); v} \\ Andrew Howroyd, Aug 19 2018

Formula

a(1) = 1; a(n > 1) = Sum_{0 < k < n - 1} a(k) * Sum_{d|(n - k - 1)} a(d).
G.f. A(x) satisfies: A(x) = x * (1 + A(x) * Sum_{k>=1} A(x^k)). - Ilya Gutkovskiy, May 03 2019

Extensions

Terms a(13) and beyond from Andrew Howroyd, Aug 19 2018

A317884 Number of series-reduced achiral free pure multifunctions (with empty expressions allowed) with one atom and n positions.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 14, 26, 47, 87, 160, 295, 540, 997, 1832, 3369, 6197, 11406, 20975, 38594, 70991, 130610, 240275, 442043, 813184, 1496053, 2752251, 5063319, 9314879, 17136632, 31526032, 57998423, 106699160, 196294065, 361120800, 664352454, 1222204958
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Comments

A series-reduced achiral expression (SRAE) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty but not unitary expression of the form h[g, ..., g], where h and g are SRAEs. The number of positions in an SRAE is the number of brackets [...] plus the number of o's.
Also the number of series-reduced achiral Mathematica expressions with one atom and n positions.

Examples

			The a(6) = 8 SRAEs:
  o[o,o,o,o]
  o[o[],o[]]
  o[][o,o,o]
  o[][][o,o]
  o[o,o,o][]
  o[][o,o][]
  o[o,o][][]
  o[][][][][]
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1, a(n-1)+add(a(j)*add(
          a(d), d=numtheory[divisors](n-j-1) minus {n-j-1}), j=1..n-1))
        end:
    seq(a(n), n=1..45);  # Alois P. Heinz, Sep 05 2018
  • Mathematica
    allAchExprSR[n_] := If[n == 1, {"o"}, Join @@ Cases[Table[PR[k, n - k - 1], {k, n - 1}], PR[h_, g_] :> Join @@ Table[Apply @@@ Tuples[{allAchExprSR[h], Select[Tuples[allAchExprSR /@ p], SameQ @@ # &]}], {p, If[g == 0, {{}}, Join @@ Permutations /@ Rest[IntegerPartitions[g]]]}]]]; Table[Length[allAchExprSR[n]], {n, 12}]
    (* Second program: *)
    a[n_] := a[n] = If[n == 1, 1, a[n-1] + Sum[a[j]*DivisorSum[
         n-j-1, If[# < n-j-1, a[#], 0]&], {j, 1, n-2}]];
    Array[a, 45] (* Jean-François Alcover, May 17 2021, after Alois P. Heinz *)
  • PARI
    seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*(1 + sum(k=2, n-2, subst(p + O(x^(n\k+1)), x, x^k)) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
    
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=v[n-1] + sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, if(dAndrew Howroyd, Aug 19 2018

Formula

a(1) = 1; a(n > 1) = a(n-1) + Sum_{0 < k < n-1} a(k) * Sum_{d|(n-k-1), d < n-k-1} a(d).

Extensions

Terms a(13) and beyond from Andrew Howroyd, Aug 19 2018

A317853 a(1) = 1; a(n > 1) = Sum_{0 < k < n} (-1)^(n - k - 1) a(n - k) Sum_{d|k} a(d).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 5, 6, 11, 14, 23, 26, 51, 70, 114, 147, 237, 314, 516, 715, 1118, 1549, 2353, 3252, 5011, 7235, 10724, 15142, 22504, 32506, 47770, 69173, 100980, 146657, 212504, 308563, 448256, 658037, 946166, 1373739, 1988283, 2919185, 4197886, 6118850
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=If[n==1,1,Sum[(-1)^(n-k-1)*a[n-k]*Sum[a[d],{d,Divisors[k]}],{k,n-1}]];
    Array[a,50]

A318149 e-numbers of free pure symmetric multifunctions with one atom.

Original entry on oeis.org

1, 4, 16, 36, 128, 256, 441, 1296, 2025, 16384, 21025, 65536, 77841, 194481, 220900, 279936, 1679616, 1803649, 4100625, 4338889, 268435456, 273571600, 442050625, 449482401, 1801088541, 4294967296, 4334247225, 6059221281
Offset: 1

Views

Author

Gus Wiseman, Aug 19 2018

Keywords

Comments

If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The sequence consists of all numbers n such that e(n) contains no empty subexpressions f[].

Examples

			The sequence of free pure symmetric multifunctions with one atom "o", together with their e-numbers begins:
       1: o
       4: o[o]
      16: o[o,o]
      36: o[o][o]
     128: o[o[o]]
     256: o[o,o,o]
     441: o[o,o][o]
    1296: o[o][o,o]
    2025: o[o][o][o]
   16384: o[o,o[o]]
   21025: o[o[o]][o]
   65536: o[o,o,o,o]
   77841: o[o,o,o][o]
  194481: o[o,o][o,o]
  220900: o[o,o][o][o]
  279936: o[o][o[o]]
		

Crossrefs

Programs

  • Mathematica
    nn=1000;
    radQ[n_]:=If[n==1,False,GCD@@FactorInteger[n][[All,2]]==1];
    rad[n_]:=rad[n]=If[n==0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];
    Clear[radPi];Set@@@Array[radPi[rad[#]]==#&,nn];
    exp[n_]:=If[n==1,"o",With[{g=GCD@@FactorInteger[n][[All,2]]},Apply[exp[radPi[Power[n,1/g]]],exp/@Flatten[Cases[FactorInteger[g],{p_?PrimeQ,k_}:>ConstantArray[PrimePi[p],k]]]]]];
    Select[Range[nn],FreeQ[exp[#],_[]]&]
  • Python
    See Neder link.

Extensions

a(16)-a(27) from Charlie Neder, Sep 01 2018

A318150 e-numbers of free pure functions with one atom.

Original entry on oeis.org

1, 4, 36, 128, 2025, 21025, 279936, 4338889, 449482401, 78701569444, 373669453125, 18845583322500, 1347646586640625, 202054211912421649, 6193981883008128893161, 139629322539586311507076, 170147232533595290155627, 355156175404848064835984400
Offset: 1

Views

Author

Gus Wiseman, Aug 19 2018

Keywords

Comments

If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). This sequence consists of all numbers n such that e(n) contains no non-unitary subexpressions f[x_1, ..., x_k] where k != 1.

Examples

			The sequence of all free pure functions with one atom together with their e-numbers begins:
        1: o
        4: o[o]
       36: o[o][o]
      128: o[o[o]]
     2025: o[o][o][o]
    21025: o[o[o]][o]
   279936: o[o][o[o]]
  4338889: o[o][o][o][o]
		

Crossrefs

Formula

a(1) = 1, and if a and b are in this sequence then so is rad(a)^prime(b). - Charlie Neder, Feb 23 2019

Extensions

More terms from Charlie Neder, Feb 23 2019

A318152 e-numbers of unlabeled rooted trees. A number n is in the sequence iff n = 2^(prime(y_1) * ... * prime(y_k)) for some k > 0 and y_1, ..., y_k already in the sequence.

Original entry on oeis.org

1, 4, 16, 128, 256, 16384, 65536, 268435456, 4294967296, 562949953421312, 9007199254740992, 72057594037927936, 18446744073709551616, 316912650057057350374175801344, 81129638414606681695789005144064, 5192296858534827628530496329220096
Offset: 1

Views

Author

Gus Wiseman, Aug 19 2018

Keywords

Comments

If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The sequence consists of all numbers n such that e(n) contains no empty subexpressions f[] or subexpressions in heads f[x_1, ..., x_k][y_1, ..., y_k] where k,j >= 0.

Examples

			The sequence contains 16384 = 2^14 = 2^(prime(1) * prime(4)) because 1 and 4 both already belong to the sequence.
The sequence of unlabeled rooted trees with e-numbers in the sequence begins:
      1: o
      4: (o)
     16: (oo)
    128: ((o))
    256: (ooo)
  16384: (o(o))
  65536: (oooo)
    .    (oo(o))
    .    (ooooo)
    .    ((o)(o))
         ((oo))
         (ooo(o))
         (oooooo)
         (o(o)(o))
         (o(oo))
         (oooo(o))
         (ooooooo)
         (oo(o)(o))
		

Crossrefs

Programs

A318153 Number of antichain covers of the free pure symmetric multifunction (with empty expressions allowed) with e-number n.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 5, 3, 3, 4, 6, 4, 4, 5, 7, 2, 5, 5, 6, 8, 3, 6, 6, 7, 4, 9, 5, 4, 7, 7, 8, 4, 5, 10, 6, 3, 5, 8, 8, 9, 5, 6, 11, 7, 4, 6, 9, 9, 5, 10, 6, 7, 12, 8, 5, 7, 10, 10, 6, 11, 7, 8, 13, 3, 9, 6, 8, 11, 11, 7, 12, 8, 9, 14, 4, 10, 7, 9, 12, 12, 3, 8
Offset: 1

Views

Author

Gus Wiseman, Aug 19 2018

Keywords

Comments

If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique free pure symmetric multifunction (with empty expressions allowed) e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The a(n) is the number of ways to partition e(n) into disjoint subexpressions such that all leaves are covered by exactly one of them.

Examples

			441 is the e-number of o[o,o][o] which has antichain covers {o[o,o][o]}, {o[o,o], o}, {o, o, o, o}}, corresponding to the leaf-colorings 1[1,1][1], 1[1,1][2], 1[2,3][4], so a(441) = 3.
		

Crossrefs

Programs

  • Mathematica
    nn=20000;
    radQ[n_]:=If[n==1,False,GCD@@FactorInteger[n][[All,2]]==1];
    rad[n_]:=rad[n]=If[n==0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];
    Clear[radPi];Set@@@Array[radPi[rad[#]]==#&,nn];
    a[n_]:=If[n==1,1,With[{g=GCD@@FactorInteger[n][[All,2]]},1+a[radPi[n^(1/g)]]*Product[a[PrimePi[pr[[1]]]]^pr[[2]],{pr,If[g==1,{},FactorInteger[g]]}]]];
    Array[a,100]

Formula

If n = rad(x)^(Product_i prime(y_i)^z_i) where rad = A007916 then a(n) = 1 + a(x) * Product_i a(y_i)^z_i.

A317676 Triangle whose n-th row lists in order all e-numbers of free pure symmetric multifunctions (with empty expressions allowed) with one atom and n positions.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 16, 7, 10, 12, 13, 21, 25, 27, 32, 36, 64, 81, 128, 256, 11, 14, 17, 18, 28, 33, 35, 41, 45, 49, 75, 93, 100, 125, 144, 145, 169, 216, 243, 279, 441, 512, 625, 729, 1024, 1296, 2048, 2187, 4096, 6561, 8192, 16384, 65536, 524288, 8388608, 9007199254740992
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Comments

Given a positive integer n we construct a unique free pure symmetric multifunction e(n) by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)].
Every free pure symmetric multifunction (with empty expressions allowed) f with one atom and n positions has a unique e-number n such that e(n) = f, and vice versa, so this sequence is a permutation of the positive integers.

Examples

			Triangle begins:
  1
  2
  3   4
  5   6   8   9  16
  7  10  12  13  21  25  27  32  36  64  81 128 256
Corresponding triangle of free pure symmetric multifunctions (with empty expressions allowed) begins:
  o,
  o[],
  o[][], o[o],
  o[][][], o[o][], o[o[]], o[][o], o[o,o].
		

Crossrefs

Programs

  • Mathematica
    maxUsing[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{maxUsing[h],Union[Sort/@Tuples[maxUsing/@p]]}],{p,IntegerPartitions[g]}]]];
    radQ[n_]:=And[n>1,GCD@@FactorInteger[n][[All,2]]==1];
    Clear[rad];rad[n_]:=rad[n]=If[n==0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];
    ungo[x_?AtomQ]:=1;ungo[h_[g___]]:=rad[ungo[h]]^(Times@@Prime/@ungo/@{g});
    Table[Sort[ungo/@maxUsing[n]],{n,5}]

A304485 Regular triangle where T(n,k) is the number of inequivalent colorings of free pure symmetric multifunctions (with empty expressions allowed) with n positions and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 4, 0, 1, 12, 23, 7, 0, 1, 20, 81, 73, 12, 0, 1, 30, 209, 407, 206, 19, 0, 1, 42, 451, 1566, 1751, 534, 30, 0, 1, 56, 858, 4711, 9593, 6695, 1299, 45, 0, 1, 72, 1494, 11951, 39255, 51111, 23530, 3004, 67, 0, 1, 90, 2430, 26752, 130220, 278570, 245319, 77205, 6664, 97, 0
Offset: 1

Views

Author

Gus Wiseman, Aug 17 2018

Keywords

Comments

A free pure symmetric multifunction (with empty expressions allowed) f in EOME is either (case 1) a positive integer, or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where k >= 0, h is in EOME, each of the g_i for i = 1, ..., k is in EOME, and for i < j we have g_i <= g_j under a canonical total ordering of EOME, such as the Mathematica ordering of expressions.
T(n,k) is also the number of inequivalent colorings of orderless Mathematica expressions with n positions and k leaves.

Examples

			Inequivalent representatives of the T(5,3) = 23 Mathematica expressions:
  1[][1,1]  1[1,1][]  1[1][1]  1[1[1]]  1[1,1[]]
  1[][1,2]  1[1,2][]  1[1][2]  1[1[2]]  1[1,2[]]
  1[][2,2]  1[2,2][]  1[2][1]  1[2[1]]  1[2,1[]]
  1[][2,3]  1[2,3][]  1[2][2]  1[2[2]]  1[2,2[]]
                      1[2][3]  1[2[3]]  1[2,3[]]
Triangle begins:
    1
    1    0
    1    2    0
    1    6    4    0
    1   12   23    7    0
    1   20   81   73   12    0
    1   30  209  407  206   19    0
    1   42  451 1566 1751  534   30    0
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(p=O(x)); for(n=1, n, p = x*sv(1) + x*p*sExp(p)); p}
    T(n)={my(v=Vec(InequivalentColoringsSeq(sFuncSubst(cycleIndexSeries(n), i->sv(i)*y^i)))); vector(n, n, Vecrev(v[n]/y, n))}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 01 2021

Extensions

Terms a(37) and beyond from Andrew Howroyd, Jan 01 2021
Previous Showing 21-30 of 33 results. Next