cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A003146 Positions of letter c in the tribonacci word abacabaabacababac... generated by a->ab, b->ac, c->a (cf. A092782).

Original entry on oeis.org

4, 11, 17, 24, 28, 35, 41, 48, 55, 61, 68, 72, 79, 85, 92, 98, 105, 109, 116, 122, 129, 136, 142, 149, 153, 160, 166, 173, 177, 184, 190, 197, 204, 210, 217, 221, 228, 234, 241, 247, 254, 258, 265, 271, 278, 285, 291, 298, 302, 309, 315, 322, 329, 335, 342, 346, 353, 359
Offset: 1

Views

Author

Keywords

Comments

Comment from Philippe Deléham, Feb 27 2009: A003144, A003145, A003146 may be defined as follows. Consider the map psi: a -> ab, b -> ac, c -> a. The image (or trajectory) of a under repeated application of this map is the infinite word a, b, a, c, a, b, a, a, b, a, c, a, b, a, b, a, c, ... (setting a = 1, b = 2, c = 3 gives A092782). The indices of a, b, c give respectively A003144, A003145, A003146.
The infinite word may also be defined as the limit S_oo where S_1 = a, S_n = psi(S_{n-1}). Or, by S_1 = a, S_2 = ab, S_3 = abac, and thereafter S_n = S_{n-1} S_{n-2} S_{n-3}. It is the unique word such that S_oo = psi(S_oo).
Also, indices of c in the sequence closed under a -> abac, b -> aba, c -> ab; starting with a(1) = a. - Philippe Deléham, Apr 16 2004
Theorem: A number m is in this sequence iff the tribonacci representation of m-1 ends with 11. [Duchene and Rigo, Remark 2.5] - N. J. A. Sloane, Mar 02 2019

References

  • Eric Duchêne, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, Urban Larsson, Wythoff Visions, Games of No Chance, Vol. 5; MSRI Publications, Vol. 70 (2017), pages 101-153.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are A276792. A278041 (subtract 1 from each term, and use offset 0).
For tribonacci representations of numbers see A278038.

Programs

  • Maple
    M:=17; S[1]:=`a`; S[2]:=`ab`; S[3]:=`abac`;
    for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od:
    t0:=S[M]: l:=length(t0); t1:=[];
    for i from 1 to l do if substring(t0,i..i) = `c` then t1:=[op(t1),i]; fi; od:
    # N. J. A. Sloane, Nov 01 2006
  • Mathematica
    StringPosition[SubstitutionSystem[{"a" -> "ab", "b" -> "ac", "c" -> "a"}, "c", {#}][[1]], "c"][[All, 1]] &@ 11 (* Michael De Vlieger, Mar 30 2017, Version 10.2, after JungHwan Min at A003144 *)

Formula

It appears that a(n) = floor(n*t^3) + eps for all n, where t is the tribonacci constant A058265 and eps is 0, 1, 2, or 3. See A277721. - N. J. A. Sloane, Oct 28 2016. This is true - see the Dekking et al. paper. - N. J. A. Sloane, Jul 22 2019

Extensions

More terms from Philippe Deléham, Apr 16 2004
Entry revised by N. J. A. Sloane, Oct 13 2016

A003726 Numbers with no 3 adjacent 1's in binary expansion.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53, 54, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 80, 81, 82
Offset: 1

Views

Author

Keywords

Comments

Positions of zeros in A014082. Could be called "tribbinary numbers" by analogy with A003714. - John Keith, Mar 07 2022
The sequence of Tribbinary numbers can be constructed by writing out the Tribonacci representations of nonnegative integers and then evaluating the result in binary. These numbers are similar to Fibbinary numbers A003714, Fibternary numbers A003726, and Tribternary numbers A356823. The number of Tribbinary numbers less than any power of two is a Tribonacci number. We can generate Tribbinary numbers recursively: Start by adding 0 and 1 to the sequence. Then, if x is a number in the sequence add 2x, 4x+1, and 8x+3 to the sequence. The n-th Tribbinary number is even if the n-th term of the Tribonacci word is a. Respectively, the n-th Tribbinary number is of the form 4x+1 if the n-th term of the Tribonacci word is b, and the n-th Tribbinary number is of the form 8x+3 if the n-th term of the Tribonacci word is c. Every nonnegative integer can be written as the sum of two Tribbinary numbers. Every number has a Tribbinary multiple. - Tanya Khovanova and PRIMES STEP Senior, Aug 30 2022

Crossrefs

Cf. A278038 (binary), A063037, A000073, A014082 (number of 111).
Cf. A004781 (complement).
Cf. A007088; A003796 (no 000), A004745 (no 001), A004746 (no 010), A004744 (no 011), A003754 (no 100), A004742 (no 101), A004743 (no 110).

Programs

  • Haskell
    a003726 n = a003726_list !! (n - 1)
    a003726_list = filter f [0..] where
       f x = x < 7 || (x `mod` 8) < 7 && f (x `div` 2)
    -- Reinhard Zumkeller, Jun 03 2012
    
  • Mathematica
    Select[Range[0, 82], SequenceCount[IntegerDigits[#, 2], {1, 1, 1}] == 0 &] (* Michael De Vlieger, Dec 23 2019 *)
  • PARI
    is(n)=!bitand(bitand(n, n<<1), n<<2) \\ Charles R Greathouse IV, Feb 11 2017

Formula

There are A000073(n+3) terms of this sequence with at most n bits. In particular, a(A000073(n+3)+1) = 2^n. - Charles R Greathouse IV, Oct 22 2021
Sum_{n>=2} 1/a(n) = 9.516857810319139410424631558212354346868048230248717360943194590798113163384... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 13 2022

A136175 Tribonacci array, T(n,k).

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 11, 9, 8, 13, 20, 17, 15, 10, 24, 37, 31, 28, 19, 12, 44, 68, 57, 51, 35, 22, 14, 81, 125, 105, 94, 64, 41, 26, 16, 149, 230, 193, 173, 118, 75, 48, 30, 18, 274, 423, 355, 318, 217, 138, 88, 55, 33, 21, 504, 778, 653, 585, 399, 254, 162, 101, 61, 39, 23
Offset: 1

Views

Author

Clark Kimberling, Dec 18 2007

Keywords

Comments

As an interspersion (and dispersion), the array is, as a sequence, a permutation of the positive integers. Column k consists of the numbers m such that the least summand in the tribonacci representation of m is T(1,k). For example, column 1 consists of numbers with least summand 1. This array arises from tribonacci representations in much the same way that the Wythoff array, A035513, arises from Fibonacci (or Zeckendorf) representations.
From Abel Amene, Jul 29 2012: (Start)
(Row 1) = A000073 (offset=4) a(0)=0, a(1)=0, a(2)=1
(Row 2) = A001590 (offset=5) a(0)=0, a(1)=1, a(2)=0
(Row 3) = A000213 (offset=4) a(0)=1, a(1)=1, a(2)=1
(Row 4) = A214899 (offset=5) a(0)=2, a(1)=1, a(2)=2
(Row 5) = A020992 (offset=6) a(0)=0, a(1)=2, a(2)=1
(Row 6) = A100683 (offset=6) a(0)=-1,a(1)=2, a(2)=2
(Row 7) = A135491 (offset=4) a(0)=2, a(1)=4, a(2)=8
(Row 8) = A214727 (offset=6) a(0)=1, a(1)=1, a(2)=2
(Row 9) = A081172 (offset=8) a(0)=1, a(1)=1, a(2)=0
(column 1) = A003265
(column 2) = A353083
(End) [Corrected and extended by John Keith, May 09 2022]

Examples

			Northwest corner:
1  2   4   7   13  24   44   81  149 274 504
3  6   11  20  37  68   125  230 423 778
5  9   17  31  57  105  193  355 653
8  15  28  51  94  173  318  585
10 19  35  64  118 217  399
12 22  41  75  138 254
14 26  48  88  162
16 30  55 101
18 33  61
21 39
23
		

Crossrefs

Programs

  • Maple
    # maximum index in A73 such that A73 <= n.
    A73floorIdx := proc(n)
        local k ;
        for k from 3 do
            if A000073(k) = n then
                return k ;
            elif A000073(k) > n then
                return k -1 ;
            end if ;
        end do:
    end proc:
    # tribonacci expansion coeffs of n
    A278038 := proc(n)
        local k,L,nres ;
        k := A73floorIdx(n) ;
        L := [1] ;
        nres := n-A000073(k) ;
        while k >= 4 do
            k := k-1 ;
            if nres >= A000073(k) then
                L := [1,op(L)] ;
                nres := nres-A000073(k) ;
            else
                L := [0,op(L)] ;
            end if ;
        end do:
        return L ;
    end proc:
    A278038inv := proc(L)
        add( A000073(i+2)*op(i,L),i=1..nops(L)) ;
    end proc:
    A135175 := proc(n,k)
        option remember ;
        local a,known,prev,nprev,kprev,freb ;
        if n =1 then
            A000073(k+2) ;
        elif k>3 then
            procname(n,k-1)+procname(n,k-2)+procname(n,k-3) ;
        else
            if k = 1 then
                for a from 1 do
                    known := false ;
                    for nprev from 1 to n-1 do
                        for kprev from 1 do
                            if procname(nprev,kprev) > a then
                                break ;
                            elif procname(nprev,kprev) = a then
                                known := true ;
                            end if;
                        end do:
                    end do:
                    if not known then
                        return a ;
                    end if;
                end do:
            else
                prev := procname(n,k-1) ;
                freb := A278038(prev) ;
                return A278038inv([0,op(freb)]) ;
            end if;
        end if;
    end proc:
    seq(seq(A135175(n,d-n),n=1..d-1),d=2..12) ; # R. J. Mathar, Jun 07 2022

Formula

T(1,1)=1, T(1,2)=2, T(1,3)=4, T(1,k)=T(1,k-1)+T(1,k-2)+T(1,k-3) for k>3. Row 1 is the tribonacci basis; write B(k)=T(1,k). Each row satisfies the recurrence T(n,k)=T(n,k-1)+T(n,k-2)+T(n,k-3). T(n,1) is least number not in an earlier row. If T(n,1) has tribonacci representation B(k(1))+B(k(2))+...+B(k(m)), then T(n,2) = B(k(2))+B(k(3))+...+B(k(m+1)) and T(n,3) = B(k(3))+B(k(4))+...+B(k(m+2)). (Continued shifting of indices gives the other terms in row n, also.)

Extensions

T(3, 4) corrected and more terms by John Keith, May 09 2022

A352103 a(n) is the maximal (or lazy) tribonacci representation of n using a binary system of vectors not containing three consecutive 0's.

Original entry on oeis.org

0, 1, 10, 11, 100, 101, 110, 111, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10010, 10011, 10100, 10101, 10110, 10111, 11001, 11010, 11011, 11100, 11101, 11110, 11111, 100100, 100101, 100110, 100111, 101001, 101010, 101011, 101100, 101101, 101110, 101111, 110010
Offset: 0

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Comments

Each nonnegative integer has 2 unique representations as sums of distinct positive tribonacci numbers (A000073): 1, 2, 4, 7, 13, 24, ...: the minimal (or greedy, A278038) representation in which there are no 3 consecutive 1's (i.e., no 3 consecutive tribonacci numbers appear in the sum), and the maximal (or lazy) representation of n in which no 3 consecutive 0's appear.

Examples

			a(5) = 101 = 4 + 1.
a(6) = 110 = 4 + 2.
a(7) = 111 = 4 + 2 + 1.
		

Crossrefs

Similar sequences: A104326 (Fibonacci), A130311 (Lucas).

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; a[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, FromDigits[v[[i[[1, 1]] ;; -1]]]]]; Array[a, 100, 0]

Formula

a(n) = A007088(A003796(n+1)).

A136808 Numbers k such that k and k^2 use only the digits 0, 1 and 2.

Original entry on oeis.org

0, 1, 10, 11, 100, 101, 110, 1000, 1001, 1010, 1011, 1100, 1101, 10000, 10001, 10010, 10011, 10100, 10110, 11000, 11001, 11010, 100000, 100001, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101100, 110000, 110001, 110010, 110100, 1000000, 1000001, 1000010, 1000011, 1000100
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Generated with DrScheme.
Subsequence of A136809, A136816, ..., A136836. - M. F. Hasler, Jan 24 2008
A278038(18) = 10101, A136827(294) = 10110001101, A136831(1276) = 101100010001101 resp. A136836(1262) = 101090009991101 are the first terms from where on these four sequences differ from the present one. - M. F. Hasler, Nov 15 2017
From Jovan Radenkovicc, Nov 15 2024: (Start)
A nonnegative integer n is in this sequence iff 10*n is also in this sequence.
Not a subsequence of A278038 (binary numbers without '111'). A counterexample is 10^2884 + 10^2880 + 10^2872 + 10^2857 + 10^2497 + 10^2426 + 10^2285 + 10^2004 + 10^1443 + 10^1442 + 10^1441 + 10^881 + 10^600 + 10^459 + 10^388 + 10^27 + 10^12 + 10^4 + 1. There are infinitely many counterexamples not divisible by 10. This counterexample follows from the fact that 111^2+2000*4+200*4=12321+8000+800=21121. In fact, every binary substring will eventually occur in this sequence. Also, if n is a term containing only the digits 0 and 1, then 10^k*n+1 and n+10^k are also in this sequence for any sufficiently large integer k. (End)

Examples

			101000100100001^2 = 10201020220210222010200200001.
		

Crossrefs

A subsequence of the binary numbers A007088.
Cf. A278038.
Cf. A136809, A136810, ..., A137147 for other digit combinations.
See also A058412 = A058411^2: squares having only digits {0,1,2}, A277946 = A277959^2 = squares whose largest digit is 2.

Programs

  • Maple
    isA136808 := proc(n) local ndgs,n2dgs ; ndgs := convert(convert(n,base,10),set) ; n2dgs := convert(convert(n^2,base,10),set) ; if ( (ndgs union n2dgs) minus {0,1,2} ) = {} then true ; else false ; fi ; end: LtonRev := proc(L) local i ; add(op(i,L)*10^(i-1),i=1..nops(L)) ; end: A007089 := proc(n) convert(n,base,3) ; LtonRev(%) ; end: n := 1: for i from 0 do n3 := A007089(i) ; if isA136808(n3) then printf("%d %d ",n,n3) ; n := n+1 ; fi ; od: # R. J. Mathar, Jan 24 2008
  • Mathematica
    Select[FromDigits/@Tuples[{0,1},7],Union[Take[DigitCount[#^2],{3,9}]]=={0}&] (* Harvey P. Dale, May 29 2013 *)
  • PARI
    for(n=1,999,vecmax(digits((N=fromdigits(binary(n),10))^2))<3 && print1(N",")) \\ M. F. Hasler, Nov 15 2017

A317204 Expansion of n in the p-system based on convergents to sqrt(2).

Original entry on oeis.org

0, 1, 10, 11, 20, 100, 101, 110, 111, 120, 200, 201, 1000, 1001, 1010, 1011, 1020, 1100, 1101, 1110, 1111, 1120, 1200, 1201, 2000, 2001, 2010, 2011, 2020, 10000, 10001, 10010, 10011, 10020, 10100, 10101, 10110, 10111, 10120, 10200, 10201, 11000, 11001, 11010, 11011
Offset: 0

Views

Author

N. J. A. Sloane, Aug 07 2018

Keywords

Comments

This is the minimal (or greedy) representation of nonnegative numbers in terms of the positive Pell numbers (A000129). - Amiram Eldar, Mar 12 2022

References

  • A. F. Horadam, Zeckendorf representations of positive and negative integers by Pell numbers, Applications of Fibonacci Numbers, Springer, Dordrecht, 1993, pp. 305-316.

Crossrefs

Similar to, but different from, A014418.
Similar sequences: A014417, A130310, A278038.

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; FromDigits @ IntegerDigits[Total[3^(s - 1)], 3]]; Array[pellp, 50, 0] (* Amiram Eldar, Mar 12 2022 *)
  • PARI
    a(n) = { my (p=[1,2]); for (k=2, oo, if (n<=p[k], my (v=0, d); while (n, v+=10^k*d=n\p[k]; n-=d*p[k]; k--); return (v/10), p = concat(p, 2*p[k]+p[k-1]))) } \\ Rémy Sigrist, Mar 12 2022

Extensions

More terms from Amiram Eldar, Mar 12 2022

A352090 Numbers k such that k and k+1 are both tribonacci-Niven numbers (A352089).

Original entry on oeis.org

1, 6, 7, 12, 13, 20, 26, 27, 39, 68, 75, 80, 81, 87, 115, 128, 135, 149, 176, 184, 185, 195, 204, 215, 224, 230, 236, 243, 264, 278, 284, 291, 344, 364, 399, 447, 506, 507, 519, 548, 555, 560, 575, 595, 615, 635, 656, 664, 665, 684, 704, 725, 744, 777, 804, 824
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2022

Keywords

Comments

Numbers k such that A278043(k) | k and A278043(k+1) | k+1.
The odd tribonacci numbers, A000073(A042964(m)), are all terms.

Examples

			6 is a term since 6 and 7 are both tribonacci-Niven numbers: the minimal tribonacci representation of 6, A278038(6) = 110, has 2 1's and 6 is divisible by 2, and the minimal tribonacci representation of 7, A278038(7) = 1000, has one 1 and 7 is divisible by 1.
		

Crossrefs

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Divisible[n, DigitCount[Total[2^(s - 1)], 2, 1]]]; Select[Range[1000], q[#] && q[# + 1] &]

A352091 Starts of runs of 3 consecutive tribonacci-Niven numbers (A352089).

Original entry on oeis.org

6, 12, 26, 80, 184, 506, 664, 1602, 1603, 1704, 3409, 6034, 9830, 15723, 16744, 19088, 21230, 21664, 22834, 33544, 39424, 40662, 40730, 51190, 55744, 56224, 60710, 61264, 63734, 66014, 66055, 67144, 67248, 73024, 78064, 81150, 84790, 94086, 95094, 109087, 111880
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2022

Keywords

Examples

			6 is a term since 6, 7 and 8 are all tribonacci-Niven numbers: the minimal tribonacci representation of 6, A278038(6) = 110, has 2 1's and 6 is divisible by 2, the minimal tribonacci representation of 7, A278038(7) = 1000, has one 1 and 7 is divisible by 1, and the minimal tribonacci representation of 8, A278038(8) = 1001, has 2 1's and 8 is divisible by 2.
		

Crossrefs

Cf. A278038.
Subsequence of A352089 and A352090.
A352092 is a subsequence.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; triboNivenQ[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Divisible[n, DigitCount[Total[2^(s - 1)], 2, 1]]]; seq[count_, nConsec_] := Module[{tri = triboNivenQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ tri, c++; AppendTo[s, k - nConsec]]; tri = Join[Rest[tri], {triboNivenQ[k]}]; k++]; s]; seq[30, 3]

A352092 Starts of runs of 4 consecutive tribonacci-Niven numbers (A352089).

Original entry on oeis.org

1602, 218349, 296469, 1213749, 1291869, 1896630, 1952070, 2153709, 2399550, 3149109, 3753870, 3809310, 3983229, 4226208, 4256790, 4449288, 4711482, 5707897, 5727708, 6141750, 6589230, 6969429, 7205757, 7229208, 7276143, 7292943, 7454710, 7752588, 7937109, 8877069
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2022

Keywords

Comments

Conjecture: There are no runs of 5 consecutive tribonacci-Niven numbers (checked up to 10^10).

Examples

			1602 is a term since 1602, 1603, 1604 and 1605 are all divisible by the number of terms in their minimal tribonacci representation:
     k    A278038(k)  A278043(k)  k/A278043(k)
  --------------------------------------------
  1602  110100011010           6           267
  1603  110100011011           7           229
  1604  110100100000           4           401
  1605  110100100001           5           321
		

Crossrefs

Subsequence of A352089, A352090 and A352091.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; triboNivenQ[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Divisible[n, DigitCount[Total[2^(s - 1)], 2, 1]]]; seq[count_, nConsec_] := Module[{tri = triboNivenQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ tri, c++; AppendTo[s, k - nConsec]]; tri = Join[Rest[tri], {triboNivenQ[k]}]; k++]; s]; seq[6, 4]

A058412 Squares composed of digits {0,1,2}, not ending with zero.

Original entry on oeis.org

1, 121, 10201, 22201, 1002001, 1022121, 1212201, 100020001, 100220121, 121022001, 210221001, 10000200001, 10002200121, 10020210201, 10201202001, 12100220001, 100021020121, 1000002000001, 1000022000121, 1000202010201
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Comments

All terms but the first one have their largest digit equal to 2, cf. A277946 = A277959^2. - M. F. Hasler, Nov 15 2017

Crossrefs

Cf. A058411.
Cf. A063009, A066139. - Zak Seidov, Jul 01 2013
Cf. A136808, A136809 and A136810, ..., A137147 for other digit combinations.
See also A277946 = A277959^2 = squares whose largest digit is 2.
The first 1261 terms are also a subsequence of A278038 (binary numbers without '111'), in turn a subsequence of the binary numbers A007088.

Programs

Formula

a(n) = A058411(n)^2. - Zak Seidov, Jul 01 2013
Previous Showing 21-30 of 42 results. Next