cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 78 results. Next

A381634 Number of multisets that can be obtained by taking the sum of each block of a set multipartition (multiset of sets) of the prime indices of n with distinct block-sums.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 5, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2025

Keywords

Comments

First differs from A050326 at a(30) = 4, A050326(30) = 5.
First differs from A339742 at a(42) = 5, A339742(42) = 4.
First differs from A381441 at a(30) = 4, A381441(30) = 5.
First differs from A381633 at a(210) = 10, A381633(210) = 12.
Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a factorization of n into squarefree numbers > 1 with distinct sums of prime indices (A056239).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition con be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Set multipartitions with distinct block-sums are generally not transitive. For example, we have arrows: {{1},{1,2}}: {1,1,2} -> {1,3} and {{1,3}}: {1,3} -> {4}, but there is no arrow {1,1,2} -> {4}.

Examples

			The prime indices of 120 are {1,1,2,3}, with 3 ways:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{2},{1,3}}
with block-sums: {1,6}, {3,4}, {1,2,4}, so a(120) = 3.
The prime indices of 210 are {1,2,3,4}, with 12 ways:
  {{1,2,3,4}}
  {{1},{2,3,4}}
  {{2},{1,3,4}}
  {{3},{1,2,4}}
  {{4},{1,2,3}}
  {{1,2},{3,4}}
  {{1,3},{2,4}}
  {{1},{2},{3,4}}
  {{1},{3},{2,4}}
  {{1},{4},{2,3}}
  {{2},{3},{1,4}}
  {{1},{2},{3},{4}}
with block-sums: {10}, {1,9}, {2,8}, {3,7}, {4,6}, {3,7}, {4,6}, {1,2,7}, {1,3,6}, {1,4,5}, {2,3,5}, {1,2,3,4}, of which 10 are distinct, so a(210) = 10.
		

Crossrefs

Without distinct block-sums we have A381078 (lower A381454), before sums A050320.
For distinct blocks instead of sums we have A381441, before sums A050326, see A358914.
Before taking sums we had A381633.
Positions of 0 are A381806.
Positions of 1 are A381870, superset of A293511.
More on set multipartitions with distinct sums: A279785, A381717, A381718.
A001055 counts multiset partitions, see A317141 (upper), A300383 (lower).
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[Union[Sort[hwt/@#]&/@Select[sfacs[n],UnsameQ@@hwt/@#&]]],{n,100}]

A382216 Number of normal multisets of size n that can be partitioned into a set of sets with distinct sums.

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 23, 48, 101, 208, 434
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2025

Keywords

Comments

We call a multiset normal iff it covers an initial interval of positive integers. The size of a multiset is the number of elements, counting multiplicity.

Examples

			The multiset {1,2,2,3,3} can be partitioned into a set of sets with distinct sums in 4 ways:
  {{2,3},{1,2,3}}
  {{2},{3},{1,2,3}}
  {{2},{1,3},{2,3}}
  {{1},{2},{3},{2,3}}
so is counted under a(5).
The multisets counted by A382214 but not by A382216 are:
  {1,1,1,1,2,2,3,3,3}
  {1,1,2,2,2,2,3,3,3}
The a(1) = 1 through a(5) = 11 multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,3}
              {1,2,2}  {1,1,2,3}  {1,1,2,2,3}
              {1,2,3}  {1,2,2,3}  {1,1,2,3,3}
                       {1,2,3,3}  {1,1,2,3,4}
                       {1,2,3,4}  {1,2,2,2,3}
                                  {1,2,2,3,3}
                                  {1,2,2,3,4}
                                  {1,2,3,3,3}
                                  {1,2,3,3,4}
                                  {1,2,3,4,4}
                                  {1,2,3,4,5}
		

Crossrefs

Twice-partitions of this type are counted by A279785, without distinct sums A358914.
Factorizations of this type are counted by A381633, without distinct sums A050326.
Normal multiset partitions of this type are counted by A381718, A116539.
The complement is counted by A382202.
Without distinct sums we have A382214, complement A292432.
The case of a unique choice is counted by A382459, without distinct sums A382458.
For Heinz numbers: A293243, A381806, A382075, A382200.
For integer partitions: A381990, A381992, A382077, A382078.
Strong version: A382523, A382430, A381996, A292444.
Normal multiset partitions: A034691, A035310, A255906.
Set systems: A050342, A296120, A318361.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Select[allnorm[n],Length[Select[mps[#],And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]>0&]],{n,0,5}]

A273866 Coefficients a(k,m) of polynomials a{k}(h) appearing in the product Product_{k >= 1} (1 - a{k}(h)*x^k) = 1 - h*x/(1-x).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 3, 5, 5, 3, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 9, 13, 13, 9, 4, 1, 1, 4, 10, 17, 20, 17, 10, 4, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 5, 16, 36, 57, 66, 57, 36, 16, 5, 1
Offset: 1

Views

Author

Gevorg Hmayakyan, Jun 01 2016

Keywords

Comments

The a(k,m) form a table where each row has k-1 elements starting from 2 and the a(1,1) = 1.

Examples

			a{1}(h) = h,
a{2}(h) = h,
a{3}(h) = h^2 + h,
a{4}(h) = h^3 + h^2 + h,
a{5}(h) = h^4 + 2*h^3 + 2*h^2 + h,
a{6}(h) = h^5 + 2*h^4 + 2*h^3 + 2*h^2 + h,
a{7}(h) = h^6 + 3*h^5 + 5*h^4 + 5*h^3 + 3*h^2 + h,
a{8}(h) = h^7 + 3*h^6 + 6*h^5 + 7*h^4 + 6*h^3 + 3*h^2 + h,
a{9}(h) = h^8 + 4*h^7 + 9*h^6 + 13*h^5 + 13*h^4 + 9*h^3 + 4*h^2 + h
...
and the corresponding a(k,m) table is:
  1,
  1,
  1,  1,
  1,  1,  1,
  1,  2,  2,  1,
  1,  2,  2,  2,  1,
  1,  3,  5,  5,  3,  1,
  1,  3,  6,  7,  6,  3,  1,
  1,  4,  9, 13, 13,  9,  4,  1,
  ...
a(7,3) = 5 because there are six strict trees contributing positive one {{5,1},1}, {{4,2},1}, {{4,1},2}, {{3,2},2}, {4,{2,1}}, {{3,1},3} and there is one strict tree contributing negative one {4,2,1}. - _Gus Wiseman_, Nov 14 2016
		

Crossrefs

Programs

  • Maple
    with(ListTools), with(numtheory), with(combinat);
    L := product(1-a[k]*x^k, k = 1 .. 600);
    S := Flatten([seq(-h, i = 1 .. 100)]);
    Sabs := Flatten([seq(i, i = 1 .. 100)]);
    seq(assign(a[i] = solve(coeff(L, x^i) = `if`(is(i in Sabs), S[Search(i, Sabs)], 0), a[i])), i = 1 .. 20);
    map(coeffs, [seq(simplify(a[i]), i = 1 .. 20)]);
  • Mathematica
    strictrees[n_Integer?Positive]:=Prepend[Join@@Function[ptn,Tuples[strictrees/@ptn]]/@Select[IntegerPartitions[n],And[Length[#]>1,UnsameQ@@#]&],n];
    Table[Sum[(-1)^(Count[tree,,{0,Infinity}]-1),{tree,Select[strictrees[n],Length[Flatten[{#}]]===m&]}],{n,1,9},{m,1,n-1/.(0->1)}] (* _Gus Wiseman, Nov 14 2016 *)
    (* second program *)
    A[m_, n_] :=
      A[m, n] =
       Which[m == 1, -h, m > n >= 1, 0, True,
        A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
    a[n_] := Expand[-A[n, n]];
    a /@ Range[1, 25] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *)

Formula

a(k,m) = a(k, k-m).
For prime p: Sum_{m = 1..p-1} a(p, m) = (2^p - 2)/p.
a{k}(h) satisfies Sum_{d|k} (1/d)*(a{k/d}(h))^d = ((h+1)^k - 1)/k. [Corrected by Petros Hadjicostas, Oct 04 2019]
For prime p: a{p}(h) = ((h+1)^p - h^p - 1)/p.
See A273873 for the definition of strict tree. Then a(n,m) = Sum_t (-1)^{v(t)-1} where the sum is over all strict trees of weight n with m leaves, and v(t) is the number of nodes in t (including the leaves, which are positive integers). See example 2 and the first Mathematica program. - Gus Wiseman, Nov 14 2016

A382075 Numbers whose prime indices can be partitioned into a set of sets with distinct sums.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2025

Keywords

Comments

First differs from A212167 in having 3600.
First differs from A335433 in lacking 72.
First differs from A339741 in having 1080.
First differs from A345172 in lacking 72.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also numbers that can be written as a product of squarefree numbers with distinct sums of prime indices.

Examples

			The prime indices of 1080 are {1,1,1,2,2,2,3}, and {{1},{2},{1,2},{1,2,3}} is a partition into a set of sets with distinct sums, so 1080 is in the sequence.
		

Crossrefs

Twice-partitions of this type are counted by A279785, see also A358914.
These are positions of terms > 0 in A381633, see A321469, A381078, A381634.
For constant instead of strict blocks see A381635, A381636, A381716.
Normal multiset partitions into sets with distinct sums are counted by A381718.
The complement is A381806, counted by A381990.
The case of a unique choice is A381870, counted by A382079, see A382078.
Partitions of this type are counted by A381992.
For distinct blocks instead of block-sums we have A382200, complement A293243.
MM-numbers of multiset partitions into sets with distinct sums are A382201.
Normal multisets of this type are counted by A382216, see also A382214.
A001055 counts multiset partitions of prime indices, strict A045778.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Select[Range[100],Length[Select[mps[prix[#]], And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]>0&]

A382200 Numbers that can be written as a product of distinct squarefree numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2025

Keywords

Comments

First differs from A339741 in having 1080.
First differs from A382075 in having 18000.
These are positions of positive terms in A050326, complement A293243.
Also numbers whose prime indices can be partitioned into distinct sets.
Differs from A212167, which does not include 18000 = 2^4*3^2*5^3, for example. - R. J. Mathar, Mar 23 2025

Examples

			The prime indices of 1080 are {1,1,1,2,2,2,3}, and {{1},{2},{1,2},{1,2,3}} is a partition into a set of sets, so 1080 is in the sequence.
We have 18000 = 2*5*6*10*30, so 18000 is in the sequence.
		

Crossrefs

Twice-partitions of this type are counted by A279785, see also A358914.
Normal multisets not of this type are counted by A292432, strong A292444.
The complement is A293243, counted by A050342.
The case of a unique choice is A293511.
MM-numbers of multiset partitions into distinct sets are A302494.
For distinct block-sums instead of blocks we have A382075, counted by A381992.
Partitions of this type are counted by A382077, complement A382078.
Normal multisets of this type are counted by A382214, strong A381996.
A001055 counts multiset partitions of prime indices, strict A045778.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    A:= Vector(N):
    A[1]:= 1:
    for n from 2 to N do
      if numtheory:-issqrfree(n) then
          S:= [$1..N/n]; T:= n*S; A[T]:= A[T]+A[S]
        fi;
    od:
    remove(t -> A[t]=0, [$1..N]); # Robert Israel, Apr 21 2025
  • Mathematica
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Select[Range[100],Length[sqfacs[#]]>0&]

A336342 Number of ways to choose a partition of each part of a strict composition of n.

Original entry on oeis.org

1, 1, 2, 7, 11, 29, 81, 155, 312, 708, 1950, 3384, 7729, 14929, 32407, 81708, 151429, 305899, 623713, 1234736, 2463743, 6208978, 10732222, 22487671, 43000345, 86573952, 160595426, 324990308, 744946690, 1336552491, 2629260284, 5050032692, 9681365777
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.
Is there a simple generating function?

Examples

			The a(1) = 1 through a(4) = 11 ways:
  (1)  (2)    (3)        (4)
       (1,1)  (2,1)      (2,2)
              (1,1,1)    (3,1)
              (1),(2)    (1),(3)
              (2),(1)    (2,1,1)
              (1),(1,1)  (3),(1)
              (1,1),(1)  (1,1,1,1)
                         (1),(2,1)
                         (2,1),(1)
                         (1),(1,1,1)
                         (1,1,1),(1)
		

Crossrefs

Multiset partitions of partitions are A001970.
Strict compositions are counted by A032020, A072574, and A072575.
Splittings of partitions are A323583.
Splittings of partitions with distinct sums are A336131.
Partitions:
- Partitions of each part of a partition are A063834.
- Compositions of each part of a partition are A075900.
- Strict partitions of each part of a partition are A270995.
- Strict compositions of each part of a partition are A336141.
Strict partitions:
- Partitions of each part of a strict partition are A271619.
- Compositions of each part of a strict partition are A304961.
- Strict partitions of each part of a strict partition are A279785.
- Strict compositions of each part of a strict partition are A336142.
Compositions:
- Partitions of each part of a composition are A055887.
- Compositions of each part of a composition are A133494.
- Strict partitions of each part of a composition are A304969.
- Strict compositions of each part of a composition are A307068.
Strict compositions:
- Partitions of each part of a strict composition are A336342.
- Compositions of each part of a strict composition are A336127.
- Strict partitions of each part of a strict composition are A336343.
- Strict compositions of each part of a strict composition are A336139.

Programs

  • Mathematica
    Table[Length[Join@@Table[Tuples[IntegerPartitions/@ctn],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}]],{n,0,10}]
  • PARI
    seq(n)={[subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, 1 + y*x^k*numbpart(k) + O(x*x^n)))]} \\ Andrew Howroyd, Apr 16 2021

Formula

G.f.: Sum_{k>=0} k! * [y^k](Product_{j>=1} 1 + y*x^j*A000041(j)). - Andrew Howroyd, Apr 16 2021

A382201 MM-numbers of sets of sets with distinct sums.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 17, 22, 26, 29, 30, 31, 33, 34, 39, 41, 43, 47, 51, 55, 58, 59, 62, 65, 66, 67, 73, 78, 79, 82, 83, 85, 86, 87, 93, 94, 101, 102, 109, 110, 113, 118, 123, 127, 129, 130, 134, 137, 139, 141, 145, 146, 149, 155, 157, 158, 163, 165
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2025

Keywords

Comments

First differs from A302494 in lacking 143, corresponding to the multiset partition {{1,2},{3}}.
Also products of prime numbers of squarefree index such that the factors all have distinct sums of prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The terms together with their prime indices of prime indices begin:
   1: {}
   2: {{}}
   3: {{1}}
   5: {{2}}
   6: {{},{1}}
  10: {{},{2}}
  11: {{3}}
  13: {{1,2}}
  15: {{1},{2}}
  17: {{4}}
  22: {{},{3}}
  26: {{},{1,2}}
  29: {{1,3}}
  30: {{},{1},{2}}
  31: {{5}}
  33: {{1},{3}}
  34: {{},{4}}
  39: {{1},{1,2}}
		

Crossrefs

Set partitions of this type are counted by A275780.
Twice-partitions of this type are counted by A279785.
For just sets of sets we have A302478.
For distinct blocks instead of block-sums we have A302494.
For equal instead of distinct sums we have A302497.
For just distinct sums we have A326535.
For normal multiset partitions see A326519, A326533, A326537, A381718.
Factorizations of this type are counted by A381633. See also A001055, A045778, A050320, A050326, A321455, A321469, A382080.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@SquareFreeQ/@prix[#]&&UnsameQ@@Total/@prix/@prix[#]&]

Formula

Equals A302478 /\ A326535.

A382214 Number of normal multisets of size n that can be partitioned into a set of sets.

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 23, 48, 101, 210, 436, 894
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2025

Keywords

Comments

First differs from A382216 at a(9) = 210, A382216(9) = 208.
We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The size of a multiset is the number of elements, counting multiplicity.

Examples

			The normal multiset {1,1,1,1,2,2,3,3,3} has partition {{1},{3},{1,2},{1,3},{1,2,3}}, so is counted under a(9).
The a(1) = 1 through a(5) = 11 multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,3}
              {1,2,2}  {1,1,2,3}  {1,1,2,2,3}
              {1,2,3}  {1,2,2,3}  {1,1,2,3,3}
                       {1,2,3,3}  {1,1,2,3,4}
                       {1,2,3,4}  {1,2,2,2,3}
                                  {1,2,2,3,3}
                                  {1,2,2,3,4}
                                  {1,2,3,3,3}
                                  {1,2,3,3,4}
                                  {1,2,3,4,4}
                                  {1,2,3,4,5}
		

Crossrefs

Factorizations of this type are counted by A050326, distinct sums A381633.
Normal multiset partitions of this type are counted by A116539, distinct sums A381718.
The complement is counted by A292432.
Twice-partitions of this type are counted by A358914, distinct sums A279785.
The strong version is A381996, complement A292444.
For integer partitions we have A382077, ranks A382200, complement A382078, ranks A293243.
For distinct sums we have A382216, complement A382202.
The case of a unique choice is counted by A382458, distinct sums A382459.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count factorizations, strict A045778.
Normal multiset partitions: A034691, A035310, A255906.
Set systems: A050342, A296120, A318361.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]] /@ Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]& /@ sps[Range[Length[mset]]]];
    Table[Length[Select[allnorm[n],Select[mps[#], UnsameQ@@#&&And@@UnsameQ@@@#&]!={}&]],{n,0,5}]

A050345 Number of ways to factor n into distinct factors with one level of parentheses.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 13, 1, 3, 3, 6, 1, 12, 1, 7, 3, 3, 3, 15, 1, 3, 3, 13, 1, 12, 1, 6, 6, 3, 1, 25, 1, 6, 3, 6, 1, 13, 3, 13, 3, 3, 1, 31, 1, 3, 6, 12, 3, 12, 1, 6, 3, 12, 1, 37, 1, 3, 6, 6, 3, 12, 1, 25, 4, 3, 1, 31, 3, 3, 3, 13, 1, 31, 3, 6, 3, 3
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

First differs from A296120 at a(36) = 15, A296120(36) = 14. - Gus Wiseman, Apr 27 2025
Each "part" in parentheses is distinct from all others at the same level. Thus (3*2)*(2) is allowed but (3)*(2*2) and (3*2*2) are not.
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).

Examples

			12 = (12) = (6*2) = (6)*(2) = (4*3) = (4)*(3) = (3*2)*(2).
From _Gus Wiseman_, Apr 26 2025: (Start)
This is the number of ways to partition a factorization of n (counted by A001055) into a set of sets. For example, the a(12) = 6 choices are:
  {{2},{2,3}}
  {{2},{6}}
  {{3},{4}}
  {{2,6}}
  {{3,4}}
  {{12}}
(End)
		

Crossrefs

For multisets of multisets we have A050336.
For integer partitions we have a(p^k) = A050342(k), see A001970, A089259, A261049.
For normal multiset partitions see A116539, A292432, A292444, A381996, A382214, A382216.
The case of a unique choice (positions of 1) is A166684.
Twice-partitions of this type are counted by A358914, see A270995, A281113, A294788.
For sets of multisets we have A383310 (distinct products A296118).
For multisets of sets we have we have A383311, see A296119.
A001055 counts factorizations, strict A045778.
A050320 counts factorizations into squarefree numbers, distinct A050326.
A302494 gives MM-numbers of sets of sets.
A382077 counts partitions that can be partitioned into a sets of sets, ranks A382200.
A382078 counts partitions that cannot be partitioned into a sets of sets, ranks A293243.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}}, Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d, Rest[Divisors[n]]}]];
    sps[{}]:={{}};sps[set:{i_,_}] := Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort /@ (#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Table[Sum[Length[Select[mps[y], UnsameQ@@#&&And@@UnsameQ@@@#&]], {y,facs[n]}],{n,30}] (* Gus Wiseman, Apr 26 2025 *)

Formula

Dirichlet g.f.: Product_{n>=2}(1+1/n^s)^A045778(n).
a(n) = A050346(A025487^(-1)(A046523(n))), where A025487^(-1) is the inverse with A025487^(-1)(A025487(n))=n. - R. J. Mathar, May 25 2017
a(n) = A050346(A101296(n)). - Antti Karttunen, May 25 2017

A300300 Number of ways to choose a multiset of strict partitions, or odd partitions, of odd numbers, whose weights sum to n.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 9, 14, 20, 32, 48, 69, 105, 150, 225, 322, 472, 669, 977, 1379, 1980, 2802, 3977, 5602, 7892, 11083, 15494, 21688, 30147, 42007, 58143, 80665, 111199, 153640, 211080, 290408, 397817, 545171, 744645, 1016826, 1385124, 1885022, 2561111, 3474730
Offset: 0

Views

Author

Gus Wiseman, Mar 02 2018

Keywords

Examples

			The a(6) = 9 multiset partitions using odd-weight strict partitions: (5)(1), (14)(1), (3)(3), (32)(1), (3)(21), (3)(1)(1)(1), (21)(21), (21)(1)(1)(1), (1)(1)(1)(1)(1)(1).
The a(6) = 9 multiset partitions using odd partitions: (5)(1), (3)(3), (311)(1), (3)(111), (3)(1)(1)(1), (11111)(1), (111)(111), (111)(1)(1)(1), (1)(1)(1)(1)(1)(1).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
          `if`(d::odd, d, 0), d=divisors(j)), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
          `if`(d::odd, b(d)*d, 0), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Mar 02 2018
  • Mathematica
    nn=50;
    ser=Product[1/(1-x^n)^PartitionsQ[n],{n,1,nn,2}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]

Formula

Euler transform of {Q(1), 0, Q(3), 0, Q(5), 0, ...} where Q = A000009.
Previous Showing 21-30 of 78 results. Next