cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 92 results. Next

A303707 Number of factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 5, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 1, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 2, 5, 1, 5, 1, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2018

Keywords

Comments

First differs from A081707 at a(60) = 9, A081707(60) = 8.

Examples

			The a(60) = 9 factorizations are (2*2*3*5), (2*2*15), (2*3*10), (2*5*6), (2*30), (3*20), (5*12), (6*10), (60).
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=Or[n===1,GCD@@FactorInteger[n][[All,2]]===1];
    facsr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsr[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[facsr[n]],{n,100}]

Formula

Dirichlet g.f.: Product_{n in A007916} 1/(1 - n^s).

A318812 Number of total multiset partitions of the multiset of prime indices of n. Number of total factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 6, 1, 3, 1, 3, 1, 1, 1, 11, 1, 1, 2, 3, 1, 4, 1, 20, 1, 1, 1, 15, 1, 1, 1, 11, 1, 4, 1, 3, 3, 1, 1, 51, 1, 3, 1, 3, 1, 11, 1, 11, 1, 1, 1, 21, 1, 1, 3, 90, 1, 4, 1, 3, 1, 4, 1, 80, 1, 1, 3, 3, 1, 4, 1, 51, 6, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Comments

A total multiset partition of m is either m itself or a total multiset partition of a multiset partition of m that is neither minimal nor maximal.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Dec 30 2019

Examples

			The a(24) = 11 total multiset partitions:
  {1,1,1,2}
  {{1},{1,1,2}}
  {{2},{1,1,1}}
  {{1,1},{1,2}}
  {{1},{1},{1,2}}
  {{1},{2},{1,1}}
  {{{1}},{{1},{1,2}}}
  {{{1}},{{2},{1,1}}}
  {{{2}},{{1},{1,1}}}
  {{{1,2}},{{1},{1}}}
  {{{1,1}},{{1},{2}}}
The a(24) = 11 total factorizations:
  24,
  (2*12), (3*8), (4*6),
  (2*2*6), (2*3*4),
  ((2)*(2*6)), ((6)*(2*2)), ((2)*(3*4)), ((3)*(2*4)), ((4)*(2*3)).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    totfac[n_]:=1+Sum[totfac[Times@@Prime/@f],{f,Select[facs[n],1
    				
  • PARI
    MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
    seq(n)={my(v=vector(n, i, isprime(i)), u=vector(n), m=logint(n,2)+1); for(r=1, m, u += v*sum(j=r, m, (-1)^(j-r)*binomial(j-1, r-1)); v=MultEulerT(v)); u[1]=1; u} \\ Andrew Howroyd, Dec 30 2019

Formula

a(product of n distinct primes) = A005121(n).
a(prime^n) = A318813(n).

A317145 Number of maximal chains of factorizations of n into factors > 1, ordered by refinement.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 1, 2, 2, 1, 1, 15, 1, 2, 1, 2, 1, 5, 1, 5, 1, 1, 1, 11, 1, 1, 2, 11, 1, 3, 1, 2, 1, 3, 1, 26, 1, 1, 2, 2, 1, 3, 1, 15, 2, 1, 1, 11, 1, 1, 1, 5, 1, 11, 1, 2, 1, 1, 1, 52, 1, 2, 2, 7, 1, 3, 1, 5, 3
Offset: 1

Views

Author

Gus Wiseman, Jul 22 2018

Keywords

Comments

If x and y are factorizations of the same integer and it is possible to produce x by further factoring the factors of y, flattening, and sorting, then x <= y.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Oct 08 2018

Examples

			The a(36) = 7 maximal chains:
  (2*2*3*3) < (2*2*9) < (2*18) < (36)
  (2*2*3*3) < (2*2*9) < (4*9)  < (36)
  (2*2*3*3) < (2*3*6) < (2*18) < (36)
  (2*2*3*3) < (2*3*6) < (3*12) < (36)
  (2*2*3*3) < (2*3*6) < (6*6)  < (36)
  (2*2*3*3) < (3*3*4) < (3*12) < (36)
  (2*2*3*3) < (3*3*4) < (4*9)  < (36)
		

Crossrefs

Programs

  • PARI
    A064988(n) = { my(f = factor(n)); for (k=1, #f~, f[k, 1] = prime(f[k, 1]); ); factorback(f); }; \\ From A064988
    memoA320105 = Map();
    A320105(n) = if(bigomega(n)<=2,1,if(mapisdefined(memoA320105,n), mapget(memoA320105,n), my(f=factor(n), u = #f~, s = 0); for(i=1,u,for(j=i+(1==f[i,2]),u, s += A320105(prime(primepi(f[i,1])*primepi(f[j,1]))*(n/(f[i,1]*f[j,1]))))); mapput(memoA320105,n,s); (s)));
    A317145(n) = A320105(A064988(n)); \\ Antti Karttunen, Oct 08 2018

Formula

a(prime^n) = A002846(n).
a(n) = A320105(A064988(n)). - Antti Karttunen, Oct 08 2018

Extensions

Data section extended to 105 terms by Antti Karttunen, Oct 08 2018

A318949 Number of ways to write n as an orderless product of orderless sums.

Original entry on oeis.org

1, 2, 3, 8, 7, 17, 15, 36, 36, 56, 56, 123, 101, 165, 197, 310, 297, 490, 490, 767, 837, 1114, 1255, 1925, 1986, 2638, 3110, 4108, 4565, 6201, 6842, 9043, 10311, 12904, 14988, 19398, 21637, 26995, 31488, 39180, 44583, 55418, 63261, 77627, 89914, 108068, 124754
Offset: 1

Views

Author

Gus Wiseman, Sep 05 2018

Keywords

Examples

			The a(6) = 17 ways:
  (6)              (2)*(3)
  (3+3)            (2)*(2+1)
  (4+2)            (2)*(1+1+1)
  (5+1)            (1+1)*(3)
  (2+2+2)          (1+1)*(2+1)
  (3+2+1)          (1+1)*(1+1+1)
  (4+1+1)
  (2+2+1+1)
  (3+1+1+1)
  (2+1+1+1+1)
  (1+1+1+1+1+1)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    prodsums[n_]:=Union[Sort/@Join@@Table[Tuples[IntegerPartitions/@fac],{fac,facs[n]}]];
    Table[Length[prodsums[n]],{n,30}]
  • PARI
    MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
    seq(n)={MultEulerT(vector(n, n, numbpart(n)))} \\ Andrew Howroyd, Oct 26 2019

Formula

Dirichlet g.f.: Product_{k>=2} 1 / (1 - k^(-s))^p(k), where p(k) = number of partitions of k (A000041). - Ilya Gutkovskiy, Oct 26 2019

A302505 Numbers whose prime indices are squarefree and have disjoint prime indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15, 16, 17, 20, 22, 24, 26, 29, 30, 31, 32, 33, 34, 40, 41, 43, 44, 47, 48, 51, 52, 55, 58, 59, 60, 62, 64, 66, 67, 68, 73, 79, 80, 82, 83, 85, 86, 88, 93, 94, 96, 101, 102, 104, 109, 110, 113, 116, 118, 120, 123, 124, 127
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set multisystems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
08: {{},{},{}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
13: {{1,2}}
15: {{1},{2}}
16: {{},{},{},{}}
17: {{4}}
20: {{},{},{2}}
22: {{},{3}}
24: {{},{},{},{1}}
26: {{},{1,2}}
29: {{1,3}}
30: {{},{1},{2}}
31: {{5}}
32: {{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Join@@primeMS/@primeMS[#]&]

A317144 Number of refinement-ordered pairs of factorizations of n into factors > 1.

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 6, 3, 3, 1, 9, 1, 3, 3, 14, 1, 9, 1, 9, 3, 3, 1, 23, 3, 3, 6, 9, 1, 12, 1, 26, 3, 3, 3, 31, 1, 3, 3, 23, 1, 12, 1, 9, 9, 3, 1, 56, 3, 9, 3, 9, 1, 23, 3, 23, 3, 3, 1, 41, 1, 3, 9, 55, 3, 12, 1, 9, 3, 12, 1, 82, 1, 3, 9, 9, 3, 12, 1, 56, 14
Offset: 1

Views

Author

Gus Wiseman, Jul 22 2018

Keywords

Comments

If x and y are factorizations of the same integer and it is possible to produce x by further factoring the factors of y, flattening, and sorting, then x <= y.
As this is a sequence computed from exponents in factorization of n, distinct values of a(n) in this sequence can be found by computing a(A025487(k)) for k >= 0. - David A. Corneth, Jul 30 2018

Examples

			The a(12) = 9 ordered pairs:
  (2*2*3) <= (12)
  (2*2*3) <= (2*6)
  (2*2*3) <= (3*4)
  (2*2*3) <= (2*2*3)
    (2*6) <= (12)
    (2*6) <= (2*6)
    (3*4) <= (12)
    (3*4) <= (3*4)
     (12) <= (12)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    faccaps[fac_]:=Union[Sort/@Apply[Times,mps[fac],{2}]];
    Table[Sum[Length[faccaps[fac]],{fac,facs[n]}],{n,100}]

Formula

a(n) >= A001055(n) + floor(A000005(n) / 2) - 1. - David A. Corneth, Jul 30 2018

A339564 Number of ways to choose a distinct factor in a factorization of n (pointed factorizations).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 7, 1, 3, 3, 7, 1, 7, 1, 7, 3, 3, 1, 14, 2, 3, 4, 7, 1, 10, 1, 12, 3, 3, 3, 17, 1, 3, 3, 14, 1, 10, 1, 7, 7, 3, 1, 26, 2, 7, 3, 7, 1, 14, 3, 14, 3, 3, 1, 25, 1, 3, 7, 19, 3, 10, 1, 7, 3, 10, 1, 36, 1, 3, 7, 7, 3, 10, 1, 26, 7, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2021

Keywords

Examples

			The pointed factorizations of n for n = 2, 4, 6, 8, 12, 24, 30:
  ((2))  ((4))    ((6))    ((8))      ((12))     ((24))       ((30))
         ((2)*2)  ((2)*3)  ((2)*4)    ((2)*6)    ((3)*8)      ((5)*6)
                  (2*(3))  (2*(4))    (2*(6))    (3*(8))      (5*(6))
                           ((2)*2*2)  ((3)*4)    ((4)*6)      ((2)*15)
                                      (3*(4))    (4*(6))      (2*(15))
                                      ((2)*2*3)  ((2)*12)     ((3)*10)
                                      (2*2*(3))  (2*(12))     (3*(10))
                                                 ((2)*2*6)    ((2)*3*5)
                                                 (2*2*(6))    (2*(3)*5)
                                                 ((2)*3*4)    (2*3*(5))
                                                 (2*(3)*4)
                                                 (2*3*(4))
                                                 ((2)*2*2*3)
                                                 (2*2*2*(3))
		

Crossrefs

The additive version is A000070 (strict: A015723).
The unpointed version is A001055 (strict: A045778, ordered: A074206, listed: A162247).
Allowing point (1) gives A057567.
Choosing a position instead of value gives A066637.
The ordered additive version is A336875.
A000005 counts divisors.
A001787 count normal multisets with a selected position.
A001792 counts compositions with a selected position.
A006128 counts partitions with a selected position.
A066186 count strongly normal multisets with a selected position.
A254577 counts ordered factorizations with a selected position.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[Union[fac]],{fac,facs[n]}],{n,50}]

Formula

a(n) = A057567(n) - A001055(n).
a(n) = Sum_{d|n, d>1} A001055(n/d).

A302590 Squarefree numbers whose prime indices are prime numbers.

Original entry on oeis.org

1, 3, 5, 11, 15, 17, 31, 33, 41, 51, 55, 59, 67, 83, 85, 93, 109, 123, 127, 155, 157, 165, 177, 179, 187, 191, 201, 205, 211, 241, 249, 255, 277, 283, 295, 327, 331, 335, 341, 353, 367, 381, 401, 415, 431, 451, 461, 465, 471, 509, 527, 537, 545, 547, 561, 563
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
From David A. Corneth, Feb 05 2021: (Start)
Product_{p in A006450} (p + 1)/p where primepi(p) <= 10^k for k = 3..9 respectively is
2.3221793975627545730894469494385382768...
2.3962097386916566795581118542505513350...
2.4423525010102788492232765893521739629...
2.4739349879225654126399615785205666552...
2.4969363158706022367680967716958174889...
2.5144436325229538304870684054018856517...
2.5282263225826916578696019016723107071... (End)

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
001: {}
003: {{1}}
005: {{2}}
011: {{3}}
015: {{1},{2}}
017: {{4}}
031: {{5}}
033: {{1},{3}}
041: {{6}}
051: {{1},{4}}
055: {{2},{3}}
059: {{7}}
067: {{8}}
083: {{9}}
085: {{2},{4}}
093: {{1},{5}}
109: {{10}}
123: {{1},{6}}
127: {{11}}
155: {{2},{5}}
157: {{12}}
165: {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[600],SquareFreeQ[#]&&And@@PrimeQ/@primeMS[#]&]
  • PARI
    ok(n)={issquarefree(n) && !#select(p->!isprime(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018

Formula

Intersection of A005117 and A076610.
Sum_{n>=1} 1/a(n) = Product_{p in A006450} (1 + 1/p) converges since the sum of the reciprocals of A006450 converges. - Amiram Eldar, Feb 02 2021

A302540 Numbers whose prime indices other than 1 are prime numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 17, 18, 20, 22, 24, 25, 27, 30, 31, 32, 33, 34, 36, 40, 41, 44, 45, 48, 50, 51, 54, 55, 59, 60, 62, 64, 66, 67, 68, 72, 75, 80, 81, 82, 83, 85, 88, 90, 93, 96, 99, 100, 102, 108, 109, 110, 118, 120, 121, 123, 124
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Programs

  • Mathematica
    Select[Range[400],#===1||And@@(#===1||PrimeQ[#]&)/@PrimePi/@FactorInteger[#][[All,1]]&]
  • PARI
    ok(n)={!#select(p->p>2 && !isprime(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018

Formula

Sum_{n>=1} 1/a(n) = 2 * Sum_{n>=1} 1/A076610(n) = 2 * Product_{p in A006450} p/(p-1) converges since the sum of the reciprocals of A006450 converges. - Amiram Eldar, Feb 02 2021

A296120 Number of ways to choose a strict factorization of each factor in a strict factorization of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 13, 1, 3, 3, 6, 1, 12, 1, 7, 3, 3, 3, 14, 1, 3, 3, 13, 1, 12, 1, 6, 6, 3, 1, 25, 1, 6, 3, 6, 1, 13, 3, 13, 3, 3, 1, 31, 1, 3, 6, 11, 3, 12, 1, 6, 3, 12, 1, 36, 1, 3, 6, 6, 3, 12, 1, 25, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Examples

			The a(36) = 14 twice-factorizations:
(36), (4*9), (3*12), (2*18), (2*3*6),
(4)*(9), (3)*(12), (3)*(3*4), (3)*(2*6), (2)*(18), (2)*(3*6), (2)*(2*9),
(2)*(3)*(6), (2)*(3)*(2*3).
		

Crossrefs

Programs

  • Mathematica
    sfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sfs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Times@@Length/@sfs/@fac,{fac,sfs[n]}],{n,100}]

Formula

Dirichlet g.f.: Product_{n > 1}(1 + A045778(n)/n^s).
Previous Showing 11-20 of 92 results. Next