A006472
a(n) = n!*(n-1)!/2^(n-1).
Original entry on oeis.org
1, 1, 3, 18, 180, 2700, 56700, 1587600, 57153600, 2571912000, 141455160000, 9336040560000, 728211163680000, 66267215894880000, 6958057668962400000, 834966920275488000000, 113555501157466368000000, 17373991677092354304000000, 2970952576782792585984000000
Offset: 1
From _Gus Wiseman_, Jul 22 2018: (Start)
The a(3) = 3 maximal chains in the lattice of set partitions of {1,2,3}:
{{1},{2},{3}} < {{1},{2,3}} < {{1,2,3}}
{{1},{2},{3}} < {{2},{1,3}} < {{1,2,3}}
{{1},{2},{3}} < {{3},{1,2}} < {{1,2,3}} (End)
From _Rajesh Kumar Mohapatra_, Sep 03 2025: (Start)
The a(3) = 3 maximal chains in the poset of the set of permutations of {1,2,3}:
{(1)(2)(3)} < (12)(3) < (123)}
{(1)(2)(3)} < (1)(23) < (123)}
{(1)(2)(3)} < (13)(2) < (132)} (End)
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 148.
- László Lovász, Combinatorial Problems and Exercises, North-Holland, 1979, p. 165.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Mike Steel, Phylogeny: Discrete and Random Processes in Evolution, SIAM, 2016, p. 47.
- T. D. Noe, Table of n, a(n) for n = 1..50
- E. H. Dickey, N. A. Rosenberg, Labelled histories with multifurcation and simultaneity, Phil. Trans. R. Soc. B 380 (2025), 20230307.
- Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
- Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers, preprint, 2003.
- Filippo Disanto and Thomas Wiehe, Some combinatorial problems on binary rooted trees occurring in population genetics, arXiv preprint arXiv:1112.1295 [math.CO], 2011-2012.
- A. W. F. Edwards, Estimation of the branch points of a branching diffusion Process, J. Royal Stat. Soc. Ser. B 32 (1970), 155-164.
- P. Erdős, R. K. Guy and J. W. Moon, On refining partitions, J. London Math. Soc., 9 (1975), 565-570.
- L. Ferretti, F. Disanto and T. Wiehe, The Effect of Single Recombination Events on Coalescent Tree Height and Shape, PLoS ONE 8(4): e60123.
- O. Frank and K. Svensson, On probability distributions of single-linkage dendrograms, Journal of Statistical Computation and Simulation, 12 (1981), 121-131. (Annotated scanned copy)
- Djamel Himane, A simple proof of Werner Schulte's conjecture, arXiv:2404.08646 [math.GM], 2024. See also Notes Num. Theor. Disc. Math., (2025) Vol. 31, No. 2, 251-225.
- M. E. Hoffman, Combinatorics of rooted trees and Hopf algebras, Trans. Amer. Math. Soc., 355, 2003, 3795-3811.
- Shi-Mei Ma, Jun Ma, and Yeong-Nan Yeh, On certain combinatorial expansions of the Legendre-Stirling numbers, arXiv:1805.10998 [math.CO], 2018.
- C. L. Mallows, Note to N. J. A. Sloane circa 1979.
- F. Murtagh, Counting dendrograms: a survey, Discrete Applied Mathematics, 7 (1984), 191-199.
- N. A. Rosenberg, The mean and variance of the numbers of r-pronged nodes and r-caterpillars in Yule-generated genealogical trees, Annals of Combinatorics, 10 (2006), 129-146.
- Thomas Wiehe, Counting, grafting and evolving binary trees, arXiv:2010.06409 [q-bio.PE], 2020.
- Johannes Wirtz, On the enumeration of leaf-labelled increasing trees with arbitrary node-degree, arXiv:2211.03632 [q-bio.PE], 2022. See page 12.
- Index entries for sequences related to factorial numbers.
A005121
Number of ultradissimilarity relations on an n-set.
Original entry on oeis.org
1, 1, 4, 32, 436, 9012, 262760, 10270696, 518277560, 32795928016, 2542945605432, 237106822506952, 26173354092593696, 3375693096567983232, 502995942483693043200, 85750135569136650473360, 16583651916595710735271248, 3611157196483089769387182064, 879518067472225603327860638128
Offset: 1
From _Gus Wiseman_, Jul 22 2018: (Start)
The (3) = 4 chains from minimum to maximum in the lattice of set partitions of {1,2,3}:
{{1},{2},{3}} < {{1,2,3}}
{{1},{2},{3}} < {{1},{2,3}} < {{1,2,3}}
{{1},{2},{3}} < {{2},{1,3}} < {{1,2,3}}
{{1},{2},{3}} < {{3},{1,2}} < {{1,2,3}}
(End)
- L. Babai and T. Lengyel, A convergence criterion for recurrent sequences with application to the partition lattice, Analysis 12 (1992), 109-119.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 316-321.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- L. Babai and T. Lengyel, A convergence criterion for recurrent sequences with application to the partition lattice, Analysis 12 (1992), 109-119.
- D. Barsky, J.-P. Bézivin, p-adic Properties of Lengyel's Numbers, Journal of Integer Sequences, 17 (2014), #14.7.3.
- P. J. Cameron, Some treelike objects, Quart. J. Math. Oxford, 38 (1987), 155-183. See p. 170 - _N. J. A. Sloane_, Apr 18 2014
- Steven R. Finch, Lengyel's Constant [Broken link]
- Steven R. Finch, Lengyel's Constant [From the Wayback machine]
- T. Lengyel, On a recurrence involving Stirling numbers, Europ. J. Combin., 5 (1984), 313-321.
- T. Lengyel, On some 2-adic properties of a recurrence involving Stirling numbers, p-Adic Numbers Ultrametric Anal. Appl. 4, No. 3, 179-186 (2012).
- F. Murtagh, Counting dendrograms: a survey, Discrete Appl. Math., 7 (1984), 191-199.
- T. Prellberg, On the asymptotic analysis of a class of linear recurrences (slides).
- M. Schader, Hierarchical analysis: classification with ordinal object dissimilarities, Metrika, 27 (1980), 127-132.
- M. Schader, Hierarchical analysis: classification with ordinal object dissimilarities, Metrika, 27 (1980), 127-132. [Annotated scanned copy]
- M. Schader, Letter to N. J. A. Sloane, Aug 25 1981.
- Eric Weisstein's World of Mathematics, Lengyel's Constant
-
a[1] = 1; a[n_] := a[n] = Sum[StirlingS2[n, k]*a[k], {k, 1, n-1}]; Array[a, 19]
(* Jean-François Alcover, Jun 24 2011, after Vladeta Jovovic *)
-
{a(n) = local(A); if( n<1, 0, for(k=1, n, A = truncate(A) + x*O(x^k); A = x - A + subst(A, x, exp(x + x*O(x^k)) - 1)); n! * polcoeff(A, n))} /* Michael Somos, Sep 22 2007 */
A318812
Number of total multiset partitions of the multiset of prime indices of n. Number of total factorizations of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 6, 1, 3, 1, 3, 1, 1, 1, 11, 1, 1, 2, 3, 1, 4, 1, 20, 1, 1, 1, 15, 1, 1, 1, 11, 1, 4, 1, 3, 3, 1, 1, 51, 1, 3, 1, 3, 1, 11, 1, 11, 1, 1, 1, 21, 1, 1, 3, 90, 1, 4, 1, 3, 1, 4, 1, 80, 1, 1, 3, 3, 1, 4, 1, 51, 6, 1, 1
Offset: 1
The a(24) = 11 total multiset partitions:
{1,1,1,2}
{{1},{1,1,2}}
{{2},{1,1,1}}
{{1,1},{1,2}}
{{1},{1},{1,2}}
{{1},{2},{1,1}}
{{{1}},{{1},{1,2}}}
{{{1}},{{2},{1,1}}}
{{{2}},{{1},{1,1}}}
{{{1,2}},{{1},{1}}}
{{{1,1}},{{1},{2}}}
The a(24) = 11 total factorizations:
24,
(2*12), (3*8), (4*6),
(2*2*6), (2*3*4),
((2)*(2*6)), ((6)*(2*2)), ((2)*(3*4)), ((3)*(2*4)), ((4)*(2*3)).
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
totfac[n_]:=1+Sum[totfac[Times@@Prime/@f],{f,Select[facs[n],1
-
MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
seq(n)={my(v=vector(n, i, isprime(i)), u=vector(n), m=logint(n,2)+1); for(r=1, m, u += v*sum(j=r, m, (-1)^(j-r)*binomial(j-1, r-1)); v=MultEulerT(v)); u[1]=1; u} \\ Andrew Howroyd, Dec 30 2019
A317144
Number of refinement-ordered pairs of factorizations of n into factors > 1.
Original entry on oeis.org
1, 1, 1, 3, 1, 3, 1, 6, 3, 3, 1, 9, 1, 3, 3, 14, 1, 9, 1, 9, 3, 3, 1, 23, 3, 3, 6, 9, 1, 12, 1, 26, 3, 3, 3, 31, 1, 3, 3, 23, 1, 12, 1, 9, 9, 3, 1, 56, 3, 9, 3, 9, 1, 23, 3, 23, 3, 3, 1, 41, 1, 3, 9, 55, 3, 12, 1, 9, 3, 12, 1, 82, 1, 3, 9, 9, 3, 12, 1, 56, 14
Offset: 1
The a(12) = 9 ordered pairs:
(2*2*3) <= (12)
(2*2*3) <= (2*6)
(2*2*3) <= (3*4)
(2*2*3) <= (2*2*3)
(2*6) <= (12)
(2*6) <= (2*6)
(3*4) <= (12)
(3*4) <= (3*4)
(12) <= (12)
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
faccaps[fac_]:=Union[Sort/@Apply[Times,mps[fac],{2}]];
Table[Sum[Length[faccaps[fac]],{fac,facs[n]}],{n,100}]
A330976
Numbers that are not the number of factorizations into factors > 1 of any positive integer.
Original entry on oeis.org
6, 8, 10, 13, 14, 17, 18, 20, 23, 24, 25, 27, 28, 32, 33, 34, 35, 37, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 53, 54, 55, 58, 59, 60, 61, 62, 63, 65, 68, 69, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 99
Offset: 1
The least number with n factorizations is
A330973(n).
-
nn=15;
fam[n_]:=fam[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[fam[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
nds=Length/@Array[fam[#]&,2^nn];
Complement[Range[nn],nds]
A318813
Number of balanced reduced multisystems with n atoms all equal to 1.
Original entry on oeis.org
1, 1, 2, 6, 20, 90, 468, 2910, 20644, 165874, 1484344, 14653890, 158136988, 1852077284, 23394406084, 317018563806, 4587391330992, 70598570456104, 1151382852200680, 19835976878704628, 359963038816096924, 6863033015330999110, 137156667020252478684, 2867083618970831936826
Offset: 1
The a(5) = 20 balanced reduced multisystems (with n written in place of 1^n):
5 (14) (23) (113) (122) (1112)
((1)(13)) ((1)(22)) ((1)(112))
((3)(11)) ((2)(12)) ((2)(111))
((11)(12))
((1)(1)(12))
((1)(2)(11))
(((1))((1)(12)))
(((1))((2)(11)))
(((2))((1)(11)))
(((12))((1)(1)))
(((11))((1)(2)))
Cf.
A000311,
A001055,
A002846,
A005121,
A213427,
A281118,
A281119,
A317145,
A318812,
A318846,
A320154,
A330474,
A330679.
-
normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
totfact[n_]:=totfact[n]=1+Sum[totfact[Times@@Prime/@normize[f]],{f,Select[facs[n],1
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=vector(n, i, i==1), u=vector(n)); for(r=1, #v, u += v*sum(j=r, #v, (-1)^(j-r)*binomial(j-1, r-1)); v=EulerT(v)); u} \\ Andrew Howroyd, Dec 30 2019
A330977
Numbers whose number of factorizations into factors > 1 (A001055) is a power of 2.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 82, 83, 85, 86, 87
Offset: 1
Factorizations of n = 1, 4, 12, 72:
() (4) (12) (72)
(2*2) (2*6) (8*9)
(3*4) (2*36)
(2*2*3) (3*24)
(4*18)
(6*12)
(2*4*9)
(2*6*6)
(3*3*8)
(3*4*6)
(2*2*18)
(2*3*12)
(2*2*2*9)
(2*2*3*6)
(2*3*3*4)
(2*2*2*3*3)
The same for strict integer partitions is
A331022.
The least number with exactly n factorizations is
A330973(n).
The least number with exactly 2^n factorizations is
A330989(n).
Numbers whose inverse prime shadow belongs to this sequence are
A330990.
Numbers with a prime number of factorizations are
A330991.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Select[Range[100],IntegerQ[Log[2,Length[facs[#]]]]&]
A080688
Resort the index of A064553 using A080444 and maintaining ascending order within each grouping: seen as a triangle read by rows, the n-th row contains the A001055(n) numbers m with A064553(m)=n.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 6, 11, 13, 8, 10, 17, 9, 19, 14, 23, 29, 12, 15, 22, 31, 37, 26, 41, 21, 43, 16, 20, 25, 34, 47, 53, 18, 33, 38, 59, 61, 28, 35, 46, 67, 39, 71, 58, 73, 79, 24, 30, 44, 51, 55, 62, 83, 49, 89, 74, 97, 27, 57, 101, 52, 65, 82
Offset: 1
a(18),a(19),a(20) and a(21) are 12,15,22 and 31 because A064553(12,15,22,31) = (12,12,12,12) similarly, A064553(36,45,66,76,93,95,118,121,149) = (36,36,36,36,36,36,36,36,36)
From _Gus Wiseman_, Sep 05 2018: (Start)
Triangle begins:
1
2
3
4 5
7
6 11
13
8 10 17
9 19
14 23
29
12 15 22 31
37
26 41
21 43
16 20 25 34 47
Corresponding triangle of factorizations begins:
(),
(2),
(3),
(2*2), (4),
(5),
(2*3), (6),
(7),
(2*2*2), (2*4), (8),
(3*3), (9),
(2*5), (10),
(11),
(2*2*3), (3*4), (2*6), (12).
(End)
-
a080688 n k = a080688_row n !! (k-1)
a080688_row n = map (+ 1) $ take (a001055 n) $
elemIndices n $ map fromInteger a064553_list
a080688_tabl = map a080688_row [1..]
a080688_list = concat a080688_tabl
-- Reinhard Zumkeller, Oct 01 2012
-
facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
Table[Sort[Table[Times@@Prime/@(f-1),{f,facs[n]}]],{n,20}] (* Gus Wiseman, Sep 05 2018 *)
Keyword tabf added and definition complemented accordingly by
Reinhard Zumkeller, Oct 01 2012
A330935
Irregular triangle read by rows where T(n,k) is the number of length-k chains from minimum to maximum in the poset of factorizations of n into factors > 1, ordered by refinement.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 3, 2, 1, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 1, 0, 1, 5, 5, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 1, 0, 1, 5, 8, 4, 0, 1, 0, 1, 0, 1, 0, 1, 7, 7, 1, 0, 1, 0, 1, 0, 1, 5, 5, 1, 0, 1
Offset: 1
Triangle begins:
1: 16: 0 1 3 2 31: 1 46: 0 1
2: 1 17: 1 32: 0 1 5 8 4 47: 1
3: 1 18: 0 1 2 33: 0 1 48: 0 1 10 23 15
4: 0 1 19: 1 34: 0 1 49: 0 1
5: 1 20: 0 1 2 35: 0 1 50: 0 1 2
6: 0 1 21: 0 1 36: 0 1 7 7 51: 0 1
7: 1 22: 0 1 37: 1 52: 0 1 2
8: 0 1 1 23: 1 38: 0 1 53: 1
9: 0 1 24: 0 1 5 5 39: 0 1 54: 0 1 5 5
10: 0 1 25: 0 1 40: 0 1 5 5 55: 0 1
11: 1 26: 0 1 41: 1 56: 0 1 5 5
12: 0 1 2 27: 0 1 1 42: 0 1 3 57: 0 1
13: 1 28: 0 1 2 43: 1 58: 0 1
14: 0 1 29: 1 44: 0 1 2 59: 1
15: 0 1 30: 0 1 3 45: 0 1 2 60: 0 1 9 11
Row n = 48 counts the following chains (minimum and maximum not shown):
() (6*8) (2*3*8)->(6*8) (2*2*2*6)->(2*4*6)->(6*8)
(2*24) (2*4*6)->(6*8) (2*2*3*4)->(2*3*8)->(6*8)
(3*16) (2*3*8)->(2*24) (2*2*3*4)->(2*4*6)->(6*8)
(4*12) (2*3*8)->(3*16) (2*2*2*6)->(2*4*6)->(2*24)
(2*3*8) (2*4*6)->(2*24) (2*2*2*6)->(2*4*6)->(4*12)
(2*4*6) (2*4*6)->(4*12) (2*2*3*4)->(2*3*8)->(2*24)
(3*4*4) (3*4*4)->(3*16) (2*2*3*4)->(2*3*8)->(3*16)
(2*2*12) (3*4*4)->(4*12) (2*2*3*4)->(2*4*6)->(2*24)
(2*2*2*6) (2*2*12)->(2*24) (2*2*3*4)->(2*4*6)->(4*12)
(2*2*3*4) (2*2*12)->(4*12) (2*2*3*4)->(3*4*4)->(3*16)
(2*2*2*6)->(6*8) (2*2*3*4)->(3*4*4)->(4*12)
(2*2*3*4)->(6*8) (2*2*2*6)->(2*2*12)->(2*24)
(2*2*2*6)->(2*24) (2*2*2*6)->(2*2*12)->(4*12)
(2*2*2*6)->(4*12) (2*2*3*4)->(2*2*12)->(2*24)
(2*2*3*4)->(2*24) (2*2*3*4)->(2*2*12)->(4*12)
(2*2*3*4)->(3*16)
(2*2*3*4)->(4*12)
(2*2*2*6)->(2*4*6)
(2*2*3*4)->(2*3*8)
(2*2*3*4)->(2*4*6)
(2*2*3*4)->(3*4*4)
(2*2*2*6)->(2*2*12)
(2*2*3*4)->(2*2*12)
Final terms of each row are
A317145.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
upfacs[q_]:=Union[Sort/@Join@@@Tuples[facs/@q]];
paths[eds_,start_,end_]:=If[start==end,Prepend[#,{}],#]&[Join@@Table[Prepend[#,e]&/@paths[eds,Last[e],end],{e,Select[eds,First[#]==start&]}]];
Table[Length[Select[paths[Join@@Table[{y,#}&/@DeleteCases[upfacs[y],y],{y,facs[n]}],{n},First[facs[n]]],Length[#]==k-1&]],{n,100},{k,PrimeOmega[n]}]
A330665
Number of balanced reduced multisystems of maximal depth whose atoms are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 3, 1, 5, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 1, 2, 2, 1, 1, 16, 1, 2, 1, 2, 1, 5, 1, 5, 1, 1, 1, 11, 1, 1, 2, 16, 1, 3, 1, 2, 1, 3, 1, 27, 1, 1, 2, 2, 1, 3, 1, 16, 2, 1, 1, 11, 1
Offset: 1
The a(n) multisystems for n = 2, 6, 12, 24, 48:
{1} {1,2} {{1},{1,2}} {{{1}},{{1},{1,2}}} {{{{1}}},{{{1}},{{1},{1,2}}}}
{{2},{1,1}} {{{1,1}},{{1},{2}}} {{{{1}}},{{{1,1}},{{1},{2}}}}
{{{1}},{{2},{1,1}}} {{{{1},{1}}},{{{1}},{{1,2}}}}
{{{1,2}},{{1},{1}}} {{{{1},{1,1}}},{{{1}},{{2}}}}
{{{2}},{{1},{1,1}}} {{{{1,1}}},{{{1}},{{1},{2}}}}
{{{{1}}},{{{1}},{{2},{1,1}}}}
{{{{1}}},{{{1,2}},{{1},{1}}}}
{{{{1},{1}}},{{{2}},{{1,1}}}}
{{{{1},{1,2}}},{{{1}},{{1}}}}
{{{{1,1}}},{{{2}},{{1},{1}}}}
{{{{1}}},{{{2}},{{1},{1,1}}}}
{{{{1},{2}}},{{{1}},{{1,1}}}}
{{{{1,2}}},{{{1}},{{1},{1}}}}
{{{{2}}},{{{1}},{{1},{1,1}}}}
{{{{2}}},{{{1,1}},{{1},{1}}}}
{{{{2},{1,1}}},{{{1}},{{1}}}}
The last nonzero term in row n of
A330667 is a(n).
The non-maximal version is
A318812.
Other labeled versions are
A330675 (strongly normal) and
A330676 (normal).
Cf.
A001055,
A005121,
A005804,
A050336,
A213427,
A292505,
A317144,
A318849,
A320160,
A330474,
A330475,
A330679.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
Showing 1-10 of 26 results.
Comments