cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 92 results. Next

A302601 Numbers that are powers of a prime number whose prime index is also a prime power (not including 1).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 17, 19, 23, 25, 27, 31, 41, 49, 53, 59, 67, 81, 83, 97, 103, 109, 121, 125, 127, 131, 157, 179, 191, 211, 227, 241, 243, 277, 283, 289, 311, 331, 343, 353, 361, 367, 401, 419, 431, 461, 509, 529, 547, 563, 587, 599, 617, 625, 661, 691, 709
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			49 is in the sequence because 49 = prime(4)^2 = prime(prime(1)^2)^2.
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset multisystems.
001: {}
003: {{1}}
005: {{2}}
007: {{1,1}}
009: {{1},{1}}
011: {{3}}
017: {{4}}
019: {{1,1,1}}
023: {{2,2}}
025: {{2},{2}}
027: {{1},{1},{1}}
031: {{5}}
041: {{6}}
049: {{1,1},{1,1}}
053: {{1,1,1,1}}
059: {{7}}
067: {{8}}
081: {{1},{1},{1},{1}}
083: {{9}}
097: {{3,3}}
103: {{2,2,2}}
109: {{10}}
121: {{3},{3}}
125: {{2},{2},{2}}
127: {{11}}
131: {{1,1,1,1,1}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],#===1||MatchQ[FactorInteger[#],{{?(PrimePowerQ[PrimePi[#]]&),}}]&]
  • PARI
    isok(n) = (n==1) || ((isprimepower(n, &p)) && isprimepower(primepi(p))); \\ Michel Marcus, Apr 10 2018

A316223 Number of subset-sum triangles with composite a subset-sum of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 4, 1, 6, 1, 13, 4, 6, 1, 25, 1, 6, 6, 38, 1, 26, 1, 26, 6, 6
Offset: 1

Views

Author

Gus Wiseman, Jun 27 2018

Keywords

Comments

A positive subset-sum is a pair (h,g), where h is a positive integer and g is an integer partition, such that some submultiset of g sums to h. A triangle consists of a root sum r and a sequence of positive subset-sums ((h_1,g_1),...,(h_k,g_k)) such that the sequence (h_1,...,h_k) is weakly decreasing and has a submultiset summing to r. The composite of a triangle is (r, g_1 + ... + g_k) where + is multiset union.

Examples

			We write positive subset-sum triangles in the form rootsum(branch,...,branch). The a(8) = 13 triangles:
  1(1(1,1,1))
  2(2(1,1,1))
  3(3(1,1,1))
  1(1(1),1(1,1))
  2(1(1),1(1,1))
  1(1(1),2(1,1))
  2(1(1),2(1,1))
  3(1(1),2(1,1))
  1(1(1,1),1(1))
  2(1(1,1),1(1))
  1(1(1),1(1),1(1))
  2(1(1),1(1),1(1))
  3(1(1),1(1),1(1))
		

Crossrefs

A322436 Number of pairs of factorizations of n into factors > 1 where no factor of the second properly divides any factor of the first.

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 5, 3, 3, 1, 8, 1, 3, 3, 11, 1, 8, 1, 8, 3, 3, 1, 18, 3, 3, 5, 8, 1, 12, 1, 15, 3, 3, 3, 31, 1, 3, 3, 18, 1, 12, 1, 8, 8, 3, 1, 39, 3, 8, 3, 8, 1, 18, 3, 18, 3, 3, 1, 42, 1, 3, 8, 33, 3, 12, 1, 8, 3, 12, 1, 67, 1, 3, 8, 8, 3, 12, 1, 39, 11
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Examples

			The a(12) = 8 pairs of factorizations:
  (2*2*3)|(2*2*3)
  (2*2*3)|(2*6)
  (2*2*3)|(3*4)
  (2*2*3)|(12)
    (2*6)|(12)
    (3*4)|(3*4)
    (3*4)|(12)
     (12)|(12)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    divpropQ[x_,y_]:=And[x!=y,Divisible[x,y]];
    Table[Length[Select[Tuples[facs[n],2],!Or@@divpropQ@@@Tuples[#]&]],{n,100}]

A295920 Number of twice-factorizations of n of type (P,R,R).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2017

Keywords

Comments

a(n) is also the number of ways to choose a perfect divisor d|n and then a sequence of log_d(n) perfect divisors of d.

Examples

			The a(64) = 17 twice-factorizations are:
(2)*(2)*(2)*(2)*(2)*(2)  (2*2)*(2*2)*(2*2)  (2*2*2)*(2*2*2)  (2*2*2*2*2*2)
(2*2)*(2*2)*(4)          (2*2)*(4)*(2*2)    (4)*(2*2)*(2*2)
(2*2)*(4)*(4)            (4)*(2*2)*(4)      (4)*(4)*(2*2)
(2*2*2)*(8)              (8)*(2*2*2)
(4)*(4)*(4)              (4*4*4)
(8)*(8)                  (8*8)
(64)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Divisors[GCD@@FactorInteger[n^(1/d)][[All,2]]]]^d,{d,Divisors[GCD@@FactorInteger[n][[All,2]]]}],{n,100}]
  • PARI
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A295920(n) = if(1==n,n,my(r); sumdiv(A052409(n), d, if(!ispower(n,d,&r),(1/0),numdiv(A052409(r))^d))); \\ Antti Karttunen, Dec 06 2018, after Mathematica-code

Formula

a(n) = Sum_{d|A052409(n)} A000005(A052409(n^(1/d)))^d. - Antti Karttunen, Dec 06 2018, after Mathematica-code

Extensions

More terms from Antti Karttunen, Dec 06 2018

A296131 Number of twice-factorizations of n where the first factorization is strict and the latter factorizations are constant, i.e., type (P,Q,R).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 8, 2, 2, 4, 4, 1, 5, 1, 9, 2, 2, 2, 9, 1, 2, 2, 8, 1, 5, 1, 4, 4, 2, 1, 13, 2, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 11, 1, 2, 4, 16, 2, 5, 1, 4, 2, 5, 1, 18, 1, 2, 4, 4, 2, 5, 1, 13, 5, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Comments

a(n) is the number of ways to choose a perfect divisor of each factor in a strict factorization of n.

Examples

			The a(24) = 8 twice-factorizations: (2)*(3)*(2*2), (2)*(3)*(4), (2)*(12), (3)*(2*2*2), (3)*(8), (2*2)*(6), (4)*(6), (24).
		

Crossrefs

Programs

  • Mathematica
    sfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sfs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Product[DivisorSigma[0,GCD@@FactorInteger[d][[All,2]]],{d,fac}],{fac,sfs[n]}],{n,100}]

Formula

Dirichlet g.f.: Product_{n > 1}(1 + A089723(n)/n^s).

A296134 Number of twice-factorizations of n of type (R,Q,R).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Comments

a(n) is the number of ways to choose a strict integer partition of a divisor of A052409(n).

Examples

			The a(16) = 4 twice-factorizations: (2)*(2*2*2), (2*2*2*2), (4*4), (16).
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[GCD@@FactorInteger[n][[All,2]],PartitionsQ],{n,100}]
  • PARI
    A000009(n,k=(n-!(n%2))) = if(!n,1,my(s=0); while(k >= 1, if(k<=n, s += A000009(n-k,k)); k -= 2); (s));
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A296134(n) = if(1==n,n,sumdiv(A052409(n),d,A000009(d))); \\ Antti Karttunen, Jul 29 2018

Formula

From Antti Karttunen, Jul 31 2018: (Start)
a(1) = 1; for n > 1, a(n) = Sum_{d|A052409(n)} A000009(d).
a(n) = A047966(A052409(n)). (End)

Extensions

More terms from Antti Karttunen, Jul 29 2018

A301595 Number of thrice-partitions of n.

Original entry on oeis.org

1, 1, 4, 10, 34, 80, 254, 604, 1785, 4370, 11986, 29286, 80355, 193137, 505952, 1239348, 3181970, 7686199, 19520906, 46931241, 117334784, 282021070, 693721166, 1659075192, 4063164983, 9651686516, 23347635094, 55405326513, 133021397071, 313842472333, 749299686508
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2018

Keywords

Comments

A thrice-partition of n is a choice of a twice-partition of each part in a partition of n. Thrice-partitions correspond to intervals in the lattice form of the multiorder of integer partitions.

Examples

			The a(3) = 10 thrice-partitions:
  ((3)), ((21)), ((111)), ((2)(1)), ((11)(1)), ((1)(1)(1)),
  ((2))((1)), ((11))((1)), ((1)(1))((1)),
  ((1))((1))((1)).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1,
          1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k))
        end:
    a:= n-> b(n$2, 3):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jan 25 2019
  • Mathematica
    twie[n_]:=Sum[Times@@PartitionsP/@ptn,{ptn,IntegerPartitions[n]}];
    thrie[n_]:=Sum[Times@@twie/@ptn,{ptn,IntegerPartitions[n]}];
    Array[thrie,30]
    (* Second program: *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0 || i == 1,
         1, b[n, i - 1, k] + b[i, i, k - 1]*b[n - i, Min[n - i, i], k]];
    a[n_] := b[n, n, 3];
    a /@ Range[0, 35] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Formula

O.g.f.: Product_{n > 0} 1/(1 - A063834(n) x^n).

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 25 2019

A316219 Number of triangles of weight prime(n) in the multiorder of integer partitions of prime numbers into prime parts.

Original entry on oeis.org

1, 1, 3, 6, 15, 31, 92, 161, 464, 2347, 3987, 18202, 50136, 81722, 214976, 903048, 3684567, 5842249, 23206424, 57341256, 89938662, 343306266, 829972421, 3084219358, 17375700038, 40920517008, 62656899579, 146415515992, 223442878751, 518427758704, 9544240589455, 21746920337606
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2018

Keywords

Comments

A prime partition is an integer partition of a prime number into prime parts. Then a(n) is the number of sequences of prime partitions whose sums are weakly decreasing and sum to the n-th prime number.

Crossrefs

Programs

  • Mathematica
    nn=20;
    pen[n_]:=pen[n]=SeriesCoefficient[Product[1/(1-x^p),{p,Select[Range[n],PrimeQ]}],{x,0,n}]
    Table[Sum[Times@@pen/@p,{p,Select[IntegerPartitions[Prime[n]],And@@PrimeQ/@#&]}],{n,nn}]
  • PARI
    P(n,f)={1/prod(k=1, n, 1 - f(k)*x^prime(k) + O(x*x^prime(n)))}
    seq(n)={my(p=P(n, i->1), q=P(n, i->polcoef(p, prime(i)))); vector(n, k, polcoef(q, prime(k)))} \\ Andrew Howroyd, Jan 16 2023

Extensions

Terms a(16) and beyond from Andrew Howroyd, Jan 16 2023

A317146 Moebius function in the ranked poset of factorizations of n into factors > 1, evaluated at the minimum (the prime factorization of n).

Original entry on oeis.org

0, 1, 1, -1, 1, -1, 1, 0, -1, -1, 1, 1, 1, -1, -1, 0, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 0, 1, 1, 2, 1, 0, -1, -1, -1, -1, 1, -1, -1, -1, 1, 2, 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -3, 1, -1, 1, 0, -1, 2, 1, 1, -1, 2, 1, 2, 1, -1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 22 2018

Keywords

Comments

If x and y are factorizations of the same integer and it is possible to produce x by further factoring the factors of y, flattening, and sorting, then x <= y.

Examples

			The factorizations of 60 followed by their Moebius values are the following. The second column sums to 0, as required.
  (2*2*3*5) -> -3
   (2*2*15) ->  1
   (2*3*10) ->  2
    (2*5*6) ->  2
     (2*30) -> -1
    (3*4*5) ->  2
     (3*20) -> -1
     (4*15) -> -1
     (5*12) -> -1
     (6*10) -> -1
       (60) ->  1
		

Crossrefs

Formula

Product_{k>=2} 1/(1-a(n)/n^s) = 1+P(s), Re(s)>1, where P(s) is the prime zeta function. - Tian Vlasic, Jan 25 2024

A317176 Number of chains of factorizations of n into factors > 1, ordered by refinement, starting with the prime factorization of n and ending with the maximum factorization (n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 6, 1, 3, 1, 3, 1, 1, 1, 11, 1, 1, 2, 3, 1, 4, 1, 18, 1, 1, 1, 15, 1, 1, 1, 11, 1, 4, 1, 3, 3, 1, 1, 49, 1, 3, 1, 3, 1, 11, 1, 11, 1, 1, 1, 21, 1, 1, 3, 74, 1, 4, 1, 3, 1, 4, 1, 78, 1, 1, 3, 3, 1, 4, 1, 49, 6, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2018

Keywords

Comments

If x and y are factorizations of the same integer and it is possible to produce x by further factoring the factors of y, flattening, and sorting, then x <= y.

Examples

			The a(24) = 11 chains:
  (2*2*2*3) < (24)
  (2*2*2*3) < (2*12)  < (24)
  (2*2*2*3) < (3*8)   < (24)
  (2*2*2*3) < (4*6)   < (24)
  (2*2*2*3) < (2*2*6) < (24)
  (2*2*2*3) < (2*3*4) < (24)
  (2*2*2*3) < (2*2*6) < (2*12) < (24)
  (2*2*2*3) < (2*2*6) < (4*6)  < (24)
  (2*2*2*3) < (2*3*4) < (2*12) < (24)
  (2*2*2*3) < (2*3*4) < (3*8)  < (24)
  (2*2*2*3) < (2*3*4) < (4*6)  < (24)
		

Crossrefs

Formula

a(prime^n) = A213427(n).
Previous Showing 51-60 of 92 results. Next