cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 49 results. Next

A322439 Number of ordered pairs of integer partitions of n where no part of the first is greater than any part of the second.

Original entry on oeis.org

1, 1, 3, 5, 11, 15, 33, 42, 82, 114, 195, 258, 466, 587, 954, 1317, 2021, 2637, 4124, 5298, 7995, 10565, 15075, 19665, 28798, 36773, 51509, 67501, 93060, 119299, 165589, 209967, 285535, 366488, 487536, 622509, 833998, 1048119, 1380410, 1754520, 2291406, 2876454
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Examples

			The a(5) = 15 pairs of integer partitions:
      (5)|(5)
     (41)|(5)
     (32)|(5)
    (311)|(5)
    (221)|(5)
    (221)|(32)
   (2111)|(5)
   (2111)|(32)
  (11111)|(5)
  (11111)|(41)
  (11111)|(32)
  (11111)|(311)
  (11111)|(221)
  (11111)|(2111)
  (11111)|(11111)
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          g(n, i-1) +g(n-i, min(i, n-i)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, b(n, i+1)+b(n-i, i)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(g(n, i)*b(n-i, i), i=1..n))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Dec 09 2018
  • Mathematica
    Table[Length[Select[Tuples[IntegerPartitions[n],2],Max@@First[#]<=Min@@Last[#]&]],{n,20}]
    (* Second program: *)
    g[n_, i_] := g[n, i] = If[n == 0 || i == 1, 1, g[n, i - 1] + g[n - i, Min[i, n - i]]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0, b[n, i+1] + b[n-i, i]]];
    a[n_] := a[n] = If[n == 0, 1, Sum[g[n, i]*b[n - i, i], {i, 1, n}]];
    a /@ Range[0, 50] (* Jean-François Alcover, May 17 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k = 1..n} A026820(n,k) * A026794(n,k).
a(n) = A000041(2n) - A362051(n) for n>=1. - Alois P. Heinz, Apr 27 2023

A326077 Number of maximal primitive subsets of {1..n}.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 6, 7, 11, 11, 13, 13, 23, 24, 36, 36, 48, 48, 64, 66, 126, 126, 150, 151, 295, 363, 507, 507, 595, 595, 895, 903, 1787, 1788, 2076, 2076, 4132, 4148, 5396, 5396, 6644, 6644, 9740, 11172, 22300, 22300, 26140, 26141, 40733, 40773, 60333, 60333, 80781, 80783
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2019

Keywords

Comments

a(n) is the number of maximal primitive subsets of {1, ..., n}. Here primitive means that no element of the subset divides any other and maximal means that no element can be added to the subset while maintaining the property of being pairwise indivisible. - Nathan McNew, Aug 10 2020

Examples

			The a(0) = 1 through a(9) = 7 sets:
  {}  {1}  {1}  {1}   {1}   {1}    {1}    {1}     {1}     {1}
           {2}  {23}  {23}  {235}  {235}  {2357}  {2357}  {2357}
                      {34}  {345}  {345}  {3457}  {3457}  {2579}
                                   {456}  {4567}  {3578}  {3457}
                                                  {4567}  {3578}
                                                  {5678}  {45679}
                                                          {56789}
		

Crossrefs

Programs

  • Mathematica
    stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}];
    fasmax[y_]:=Complement[y, Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],stableQ[#,Divisible]&]]],{n,0,10}]
  • PARI
    divset(n)={sumdiv(n, d, if(dif(k>#p, ismax(b), my(f=!bitand(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 30 2019

Extensions

Terms a(19) to a(55) from Andrew Howroyd, Aug 30 2019
Name edited by Nathan McNew, Aug 10 2020

A371178 Number of integer partitions of n containing all divisors of all parts.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 9, 12, 16, 21, 28, 37, 48, 62, 80, 101, 127, 162, 202, 252, 312, 386, 475, 585, 713, 869, 1056, 1278, 1541, 1859, 2232, 2675, 3196, 3811, 4534, 5386, 6379, 7547, 8908, 10497, 12345, 14501, 16999, 19897, 23253, 27135, 31618, 36796, 42756
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2024

Keywords

Comments

The Heinz numbers of these partitions are given by A371177.
Also partitions such that the number of distinct parts is equal to the number of distinct divisors of parts.

Examples

			The partition (4,2,1,1) contains all distinct divisors {1,2,4}, so is counted under a(8).
The partition (4,4,3,2,2,2,1) contains all distinct divisors {1,2,3,4} so is counted under 4 + 4 + 3 + 2 + 2 + 2 + 1 = 18. - _David A. Corneth_, Mar 18 2024
The a(0) = 1 through a(8) = 12 partitions:
  ()  (1)  (11)  (21)   (31)    (221)    (51)      (331)      (71)
                 (111)  (211)   (311)    (321)     (421)      (521)
                        (1111)  (2111)   (2211)    (511)      (3221)
                                (11111)  (3111)    (2221)     (3311)
                                         (21111)   (3211)     (4211)
                                         (111111)  (22111)    (5111)
                                                   (31111)    (22211)
                                                   (211111)   (32111)
                                                   (1111111)  (221111)
                                                              (311111)
                                                              (2111111)
                                                              (11111111)
		

Crossrefs

The LHS is represented by A001221, distinct case of A001222.
For partitions with no divisors of parts we have A305148, ranks A316476.
The RHS is represented by A370820, for prime factors A303975.
The strict case is A371128.
Counting all parts on the LHS gives A371130, ranks A370802.
The complement is counted by A371132.
For submultisets instead of distinct parts we have A371172, ranks A371165.
These partitions have ranks A371177.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SubsetQ[#,Union@@Divisors/@#]&]],{n,0,30}]

A316468 Matula-Goebel numbers of locally stable rooted trees, meaning no branch is a submultiset of any other branch of the same root.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 15, 16, 17, 19, 23, 25, 27, 31, 32, 33, 35, 45, 47, 49, 51, 53, 55, 59, 64, 67, 69, 75, 77, 81, 83, 85, 93, 95, 97, 99, 103, 119, 121, 125, 127, 128, 131, 135, 137, 141, 149, 153, 155, 161, 165, 175, 177, 187, 197, 201, 207, 209
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. A number is in the sequence iff its distinct prime indices are pairwise indivisible and already belong to the sequence.

Examples

			Sequence of locally stable rooted trees preceded by their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  11: ((((o))))
  15: ((o)((o)))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  31: (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Or[#==1,And[Select[Tuples[primeMS[#],2],UnsameQ@@#&&Divisible@@#&]=={},And@@#0/@primeMS[#]]]&]

A316467 Matula-Goebel numbers of locally stable rooted identity trees, meaning no branch is a subset of any other branch of the same root.

Original entry on oeis.org

1, 2, 3, 5, 11, 15, 31, 33, 47, 55, 93, 127, 137, 141, 155, 165, 211, 257, 341, 381, 411, 465, 487, 633, 635, 709, 771, 773, 811, 907, 977, 1023, 1055, 1285, 1297, 1397, 1457, 1461, 1507, 1621, 1705, 1905, 2127, 2293, 2319, 2321, 2433, 2621, 2721, 2833, 2931
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. A number belongs to this sequence iff it is squarefree, its distinct prime indices are pairwise indivisible, and its prime indices also belong to this sequence.

Examples

			165 = prime(2)*prime(3)*prime(5) belongs to the sequence because it is squarefree, the indices {2,3,5} are pairwise indivisible, and each of them already belongs to the sequence.
Sequence of locally stable rooted identity trees preceded by their Matula-Goebel numbers begins:
    1: o
    2: (o)
    3: ((o))
    5: (((o)))
   11: ((((o))))
   15: ((o)((o)))
   31: (((((o)))))
   33: ((o)(((o))))
   47: (((o)((o))))
   55: (((o))(((o))))
   93: ((o)((((o)))))
  127: ((((((o))))))
  137: (((o)(((o)))))
  141: ((o)((o)((o))))
  155: (((o))((((o)))))
  165: ((o)((o))(((o))))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ain[n_]:=And[Select[Tuples[primeMS[n],2],UnsameQ@@#&&Divisible@@#&]=={},SquareFreeQ[n],And@@ain/@primeMS[n]];
    Select[Range[100],ain]

A316474 Number of locally stable rooted identity trees with n nodes, meaning no branch is a subset of any other branch of the same root.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 5, 8, 14, 23, 42, 73, 133, 241, 442, 812, 1508, 2802, 5247, 9842, 18554, 35045, 66453, 126249
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2018

Keywords

Examples

			The a(9) = 8 locally stable rooted identity trees:
((((((((o))))))))
(((((o)((o))))))
((((o)(((o))))))
(((o)((((o))))))
((((o))(((o)))))
((o)(((((o))))))
((o)((o)((o))))
(((o))((((o)))))
		

Crossrefs

Programs

  • Mathematica
    strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],UnsameQ@@#&&Select[Tuples[#,2],UnsameQ@@#&&Complement@@#=={}&]=={}&]];
    Table[Length[strut[n]],{n,20}]

A322437 Number of unordered pairs of factorizations of n into factors > 1 where no factor of one divides any factor of the other.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Comments

First differs from A322438 at a(144) = 3, A322438(144) = 4.
From Antti Karttunen, Dec 11 2020: (Start)
Zeros occur on numbers that are either of the form p^k, or q * p^k, or p*q*r, for some primes p, q, r, and exponent k >= 0. [Note also that in all these cases, when x > 1, A307408(x) = 2+A307409(x) = 2 + (A001222(x) - 1)*A001221(x) = A000005(x)].
Proof:
It is easy to see that for such numbers it is not possible to obtain two such distinct factorizations, that no factor of the other would not divide some factor of the other.
Conversely, the complement set of above is formed of such composites n that have at least one unitary divisor that is either of the form
(1) p^x * q^y, with x, y >= 2,
or
(2) p^x * q^y * r^z, with x >= 2, and y, z >= 1,
or
(3) p^x * q^y * r^z * s^w, with x, y, z, w >= 1,
where p, q, r, s are distinct primes. Let's indicate with C the remaining portion of k coprime to p, q, r and s (which could be also 1). Then in case (1) we can construct two factorizations, the first having factors (p*q*C) and (p^(x-1) * q^(y-1)), and the second having factors (p^x * C) and (q^y) that are guaranteed to satisfy the condition that no factor in the other factorization divides any of the factors of the other factorization. For case (2) pairs like {(p * q^y * C), (p^(x-1) * r^z)} and {(p^x * C), (q^y * r^z)}, and for case (3) pairs like {(p^x * q^y * C), (r^z * s^w)} and {(p^x * r^z * C), (q^y * s^w)} offer similar examples, therefore a(n) > 0 for all such cases.
(End)

Examples

			The a(120) = 2 pairs of such factorizations:
   (6*20)|(8*15)
   (8*15)|(10*12)
The a(144) = 3 pairs of factorizations:
   (6*24)|(9,16)
   (8*18)|(12*12)
   (9*16)|(12*12)
The a(210) = 3 pairs of factorizations:
   (6*35)|(10*21)
   (6*35)|(14*15)
  (10*21)|(14*15)
[Note that 210 is the first squarefree number obtaining nonzero value]
The a(240) = 4 pairs of factorizations:
   (6*40)|(15*16)
   (8*30)|(12*20)
  (10*24)|(15*16)
  (12*20)|(15*16)
The a(1728) = 14 pairs of factorizations:
    (6*6*48)|(27*64)
   (6*12*24)|(27*64)
     (6*288)|(27*64)
    (8*8*27)|(12*12*12)
  (12*12*12)|(27*64)
  (12*12*12)|(32*54)
    (12*144)|(27*64)
    (12*144)|(32*54)
    (16*108)|(24*72)
     (18*96)|(27*64)
     (24*72)|(27*64)
     (24*72)|(32*54)
     (27*64)|(36*48)
     (32*54)|(36*48)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[Subsets[facs[n],{2}],And[!Or@@Divisible@@@Tuples[#],!Or@@Divisible@@@Reverse/@Tuples[#]]&]],{n,100}]
  • PARI
    factorizations(n, m=n, f=List([]), z=List([])) = if(1==n, listput(z,Vec(f)); z, my(newf); fordiv(n, d, if((d>1)&&(d<=m), newf = List(f); listput(newf,d); z = factorizations(n/d, d, newf, z))); (z));
    is_ndf_pair(fac1,fac2) = { for(i=1,#fac1,for(j=1,#fac2,if(!(fac1[i]%fac2[j])||!(fac2[j]%fac1[i]),return(0)))); (1); };
    number_of_ndfpairs(z) = sum(i=1,#z,sum(j=i+1,#z,is_ndf_pair(z[i],z[j])));
    A322437(n) = number_of_ndfpairs(Vec(factorizations(n))); \\ Antti Karttunen, Dec 10 2020

Formula

For n > 0, a(A002110(n)) = A322441(n)/2 = A339626(n). - Antti Karttunen, Dec 10 2020

Extensions

Data section extended up to a(120) and more examples added by Antti Karttunen, Dec 10 2020

A328677 Numbers whose distinct prime indices are relatively prime and pairwise indivisible.

Original entry on oeis.org

2, 4, 8, 15, 16, 32, 33, 35, 45, 51, 55, 64, 69, 75, 77, 85, 93, 95, 99, 119, 123, 128, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 201, 205, 207, 209, 215, 217, 219, 221, 225, 245, 249, 253, 255, 256, 265, 275, 279, 287, 291, 295, 297, 309, 323
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Stable numbers are listed in A316476.

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    4: {1,1}
    8: {1,1,1}
   15: {2,3}
   16: {1,1,1,1}
   32: {1,1,1,1,1}
   33: {2,5}
   35: {3,4}
   45: {2,2,3}
   51: {2,7}
   55: {3,5}
   64: {1,1,1,1,1,1}
   69: {2,9}
   75: {2,3,3}
   77: {4,5}
   85: {3,7}
   93: {2,11}
   95: {3,8}
   99: {2,2,5}
  119: {4,7}
		

Crossrefs

These are the Heinz numbers of the partitions counted by A328676.
Numbers whose prime indices are relatively prime are A289509.
Partitions whose distinct parts are pairwise indivisible are A305148.
The version for binary indices (instead of prime indices) is A328671.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[100],GCD@@primeMS[#]==1&&stableQ[primeMS[#],Divisible]&]

Formula

Intersection of A316476 and A289509.

A317102 Powerful numbers whose distinct prime multiplicities are pairwise indivisible.

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 169, 196, 200, 216, 225, 243, 256, 288, 289, 343, 361, 392, 432, 441, 484, 500, 512, 529, 625, 648, 675, 676, 729, 800, 841, 864, 900, 961, 968, 972, 1000, 1024, 1089, 1125, 1152, 1156, 1225
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

A number is powerful if its prime multiplicities are all greater than 1.

Examples

			144 = 2^4 * 3^2 is not in the sequence because 4 and 2 are not pairwise indivisible.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,i,j,q;
      L:= convert(map(t -> t[2],ifactors(n)[2]),set);
      if min(L) = 1 then return false fi;
      for j from 2 to nops(L) do
        for i from 1 to j-1 do
          q:= L[i]/L[j];
          if q::integer or (1/q)::integer then return false fi;
      od od;
      true
    end proc:
    select(filter, [$4..10000]); # Robert Israel, Jun 23 2019
  • Mathematica
    Select[Range[1000],And[Max@@Last/@FactorInteger[#]>=2,Select[Tuples[Last/@FactorInteger[#],2],And[UnsameQ@@#,Divisible@@#]&]=={}]&]

Extensions

Definition corrected and a(1)=1 inserted by Robert Israel, Jun 23 2019

A318727 Number of integer compositions of n where adjacent parts are indivisible (either way) and the last and first part are also indivisible (either way).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 5, 3, 5, 13, 9, 23, 15, 37, 45, 63, 115, 131, 207, 265, 415, 603, 823, 1251, 1673, 2521, 3519, 5147, 7409, 10449, 15225, 21497, 31285, 44719, 64171, 92315, 131619, 190085, 271871, 391189, 560979, 804265, 1155977, 1656429, 2381307, 3414847
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Examples

			The a(10) = 13 compositions:
  (10)
  (7,3) (3,7) (6,4) (4,6)
  (5,3,2) (5,2,3) (3,5,2) (3,2,5) (2,5,3) (2,3,5)
  (3,2,3,2) (2,3,2,3)
		

Crossrefs

Programs

  • Mathematica
    Table[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,({_,x_,y_,_}/;Divisible[x,y]||Divisible[y,x])|({y_,_,x_}/;Divisible[x,y]||Divisible[y,x])]&]//Length,{n,20}]
  • PARI
    b(n,k,pred)={my(M=matrix(n,n)); for(n=1, n, M[n,n]=pred(k,n); for(j=1, n-1, M[n,j]=sum(i=1, n-j, if(pred(i,j), M[n-j,i], 0)))); sum(i=1, n, if(pred(i,k), M[n,i], 0))}
    a(n)={1 + sum(k=1, n-1, b(n-k, k, (i,j)->i%j<>0&&j%i<>0))} \\ Andrew Howroyd, Sep 08 2018

Extensions

a(21)-a(28) from Robert Price, Sep 07 2018
Terms a(29) and beyond from Andrew Howroyd, Sep 08 2018
Previous Showing 21-30 of 49 results. Next