A332785
Nonsquarefree numbers that are not squareful.
Original entry on oeis.org
12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 204, 207, 208, 212, 220, 224
Offset: 1
18 = 2 * 3^2 is nonsquarefree as it is divisible by the square 3^2, but it is not squareful because 2 divides 18 but 2^2 does not divide 18, hence 18 is a term.
72 = 2^3 * 3^2 is nonsquarefree as it is divisible by the square 3^2, but it is also squareful because primes 2 and 3 divide 72, and 2^2 and 3^2 divide also 72, so 72 is not a term.
-
filter:= proc(n) local F;
F:= ifactors(n)[2][..,2];
max(F) > 1 and min(F) = 1
end proc:
select(filter, [$1..1000]); # Robert Israel, Sep 15 2024
-
Select[Range[225], Max[(e = FactorInteger[#][[;;,2]])] > 1 && Min[e] == 1 &] (* Amiram Eldar, Feb 24 2020 *)
-
isok(m) = !issquarefree(m) && !ispowerful(m); \\ Michel Marcus, Feb 24 2020
-
from math import isqrt
from sympy import mobius, integer_nthroot
def A332785(n):
def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c, l, j = n-1+squarefreepi(integer_nthroot(x,3)[0])+squarefreepi(x), 0, isqrt(x)
while j>1:
k2 = integer_nthroot(x//j**2,3)[0]+1
w = squarefreepi(k2-1)
c += j*(w-l)
l, j = w, isqrt(x//k2**3)
return c-l
return bisection(f,n,n) # Chai Wah Wu, Sep 14 2024
A303606
Powers of composite squarefree numbers that are not squarefree.
Original entry on oeis.org
36, 100, 196, 216, 225, 441, 484, 676, 900, 1000, 1089, 1156, 1225, 1296, 1444, 1521, 1764, 2116, 2601, 2744, 3025, 3249, 3364, 3375, 3844, 4225, 4356, 4761, 4900, 5476, 5929, 6084, 6724, 7225, 7396, 7569, 7776, 8281, 8649, 8836, 9025, 9261, 10000, 10404, 10648, 11025, 11236
Offset: 1
196 is in the sequence because 196 = 2^2*7^2.
4900 is in the sequence because 4900 = 2^2*5^2*7^2.
-
Select[Range[12000], Length[Union[FactorInteger[#][[All, 2]]]] == 1 && ! SquareFreeQ[#] && ! PrimePowerQ[#] &]
seq[max_] := Module[{sp = Select[Range[Floor@Sqrt[max]], SquareFreeQ[#] && PrimeNu[#] > 1 &], s = {}}, Do[s = Join[s, sp[[k]]^Range[2, Floor@Log[sp[[k]], max]]], {k, 1, Length[sp]}]; Union@s]; seq[10^4] (* Amiram Eldar, Feb 12 2021 *)
-
from math import isqrt
from sympy import mobius, primepi, integer_nthroot
def A303606(n):
def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))-primepi(x))
def f(x): return n-3+x+(y:=x.bit_length())-sum(g(integer_nthroot(x,k)[0]) for k in range(2,y))
kmin, kmax = 1,2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 19 2024
A364054
a(1) = 1; for n > 1, a(n) is the least positive integer not already in the sequence such that a(n) == a(n-1) (mod prime(n-1)).
Original entry on oeis.org
1, 3, 6, 11, 4, 15, 2, 19, 38, 61, 32, 63, 26, 67, 24, 71, 18, 77, 16, 83, 12, 85, 164, 81, 170, 73, 174, 277, 384, 57, 283, 29, 160, 23, 162, 13, 315, 158, 321, 154, 327, 148, 329, 138, 331, 134, 333, 122, 345, 118, 347, 114, 353, 112, 363, 106, 369, 100, 371, 94, 375, 92, 385
Offset: 1
For n = 2, prime(2-1) = prime(1) = 2; a(1) = 1, so a(1) mod 2 = 1, so a(2) is the least positive integer == 1 (mod 2) that has not yet appeared; 1 has appeared, so a(2) = 3.
For n = 3, prime(3-1) = 3; a(2) mod 3 = 0, so a(3) is the least unused integer == 0 mod 3, which is 6, so a(3) = 6.
For n = 4, prime(4-1) = 5; a(3) mod 5 = 1, and 6 has already been used, so a(4) = 11.
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane, Sketch showing the main features of the graph
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^20.
- Michael De Vlieger, 2048 X 2048 raster showing a(n) , n = 1..4194304 in rows of 2048 terms, left to right, then continued below for 2048 rows total. Color indicates terms as follows: black = empty product {1}, red = prime (A40), gold = composite prime power (A246547), bright green = primorial A2110(k), k > 1, light green = squarefree semiprime (A6881 \ {6}), dark green = squarefree composite (A120944 \ {A2110 U A6881}), blue = numbers neither squarefree nor composite (A126706 \ A286708 = A332785), purple = squareful numbers that are not prime powers (A286708).
- Chai Wah Wu, Graph of first 10^8 terms
For a(n-1) (mod prime(n-1)) see
A366470.
-
a[1] = 1; a[n_] := a[n] = Module[{p = Prime[n - 1], k = 2, s = Array[a, n - 1]}, While[! FreeQ[s, k] || ! Divisible[k - a[n - 1], p], k++]; k]; Array[a, 100] (* Amiram Eldar, Oct 20 2023 *)
nn = 2^20; c[] := False; m[] := 0; a[1] = j = 1; c[0] = c[1] = True;
Monitor[Do[p = Prime[n - 1]; r = Mod[j, p];
While[Set[k, p m[p] + r ]; c[k], m[p]++];
Set[{a[n], c[k], j}, {k, True, k}], {n, 2, nn}], n];
Array[a, nn] (* Michael De Vlieger, Oct 26 2023, fast, based on congruence, avoids search *)
-
from itertools import count, islice
from sympy import nextprime
def A364054_gen(): # generator of terms
a, aset, p = 1, {0,1}, 2
while True:
yield a
for b in count(a%p,p):
if b not in aset:
aset.add(b)
a, p = b, nextprime(p)
break
A364054_list = list(islice(A364054_gen(),30)) # Chai Wah Wu, Oct 22 2023
Original entry on oeis.org
36, 48, 50, 54, 72, 75, 80, 96, 98, 100, 108, 112, 135, 144, 147, 160, 162, 189, 192, 196, 200, 216, 224, 225, 240, 242, 245, 250, 252, 270, 288, 294, 300, 320, 324, 336, 338, 350, 352, 360, 363, 375, 378, 384, 392, 396, 400, 405, 416, 432, 441, 448, 450, 468, 480, 484, 486, 490, 500, 504, 507, 525
Offset: 1
For prime p, A360480(p) = A360543(p) = A361235(p) = A355432(p) = 0, since k < p is coprime to p.
For prime power n = p^e > 4, e > 0, A360543(n) = p^(e-1) - e, but A360480(n) = A361235(n) = A355432(n) = 0, since the other sequences require omega(n) > 1.
For squarefree composite n, A360480(n) >= 1 and A361235(n) >= 1 (the latter for n > 6), but A360543(n) = A355432(n) = 0, since the other sequences require at least 1 prime power factor p^e | n with e > 0.
For n = 18, A360480(n) = | {10, 14, 15} | = 3,
A360543(n) = | {} | = 0,
A361235(n) = | {4, 8, 16} | = 3,
A355432(n) = | {12} | = 1.
Therefore 18 is not in the sequence.
For n = 36, A360480(n) = | {10, 14, 15, 20, 21, 22, 26, 28, 33, 34} | = 10,
A360543(n) = | {30} | = 1,
A361235(n) = | {8, 16, 27, 32} | = 4,
A355432(n) = | {24} | = 1.
Therefore 36 is the smallest term in the sequence.
Table pertaining to the first 12 terms:
Key: a = A360480, b = A360543, c = A243823; d = A361235, e = A355432, f = A243822;
g = A046753 = f + c, tau = A000005, phi = A000010.
n | a + b = c | d + e = f | g + tau + phi - 1 = n
------------------------------------------------------
36 | 10 + 1 = 11 | 4 + 1 = 5 | 16 + 9 + 12 - 1 = 36
48 | 16 + 2 = 18 | 3 + 2 = 5 | 23 + 10 + 16 - 1 = 48
50 | 18 + 1 = 19 | 4 + 2 = 6 | 25 + 6 + 20 - 1 = 50
54 | 19 + 2 = 21 | 4 + 4 = 8 | 29 + 8 + 18 - 1 = 54
72 | 27 + 4 = 31 | 4 + 2 = 6 | 37 + 12 + 24 - 1 = 72
75 | 25 + 2 = 27 | 2 + 1 = 3 | 30 + 6 + 40 - 1 = 75
80 | 32 + 3 = 35 | 3 + 1 = 4 | 39 + 10 + 32 - 1 = 80
96 | 38 + 7 = 45 | 4 + 4 = 8 | 53 + 12 + 32 - 1 = 96
98 | 41 + 3 = 44 | 5 + 2 = 7 | 51 + 6 + 42 - 1 = 98
100 | 42 + 4 = 46 | 4 + 2 = 6 | 52 + 9 + 40 - 1 = 100
108 | 44 + 8 = 52 | 5 + 4 = 9 | 61 + 12 + 36 - 1 = 108
112 | 48 + 3 = 51 | 3 + 1 = 4 | 55 + 10 + 48 - 1 = 112
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
- Michael De Vlieger, Diagram showing k = 1..n for n = 1..54 in blue for k counted by A360480(n), in green for k counted by A360543(n), in gold for k counted by A361235(n), and in magenta for k counted by A355432(n). Red dots indicate k | n such that k > 1, while gray dots indicate gcd(k, n) = 1.
- Michael De Vlieger, 1016 X 1016 pixel bitmap read left to right in rows, then top to bottom where the k-th pixel is black if A126706(k) is in this sequence, else white (1032256 pixels total).
Cf.
A000005,
A000010,
A001694,
A002182,
A007947,
A045763,
A053669,
A119288,
A126706,
A168263,
A243822,
A243823,
A355432,
A360480,
A360543,
A361235.
-
nn = 2^16;
a053669[n_] := If[OddQ[n], 2, p = 2; While[Divisible[n, p], p = NextPrime[p]]; p];
s = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &];
Reap[ Do[n = s[[j]];
If[And[#1*a053669[n] < n, n/#1 >= #2] & @@ {Times @@ #, #[[2]]} &@
FactorInteger[n][[All, 1]], Sow[n]], {j, Length[s]}]][[-1, -1]]
A376936
Powerful numbers divisible by cubes of 2 distinct primes.
Original entry on oeis.org
216, 432, 648, 864, 1000, 1296, 1728, 1944, 2000, 2592, 2744, 3375, 3456, 3888, 4000, 5000, 5184, 5400, 5488, 5832, 6912, 7776, 8000, 9000, 9261, 10000, 10125, 10368, 10584, 10648, 10800, 10976, 11664, 13500, 13824, 15552, 16000, 16200, 16875, 17496, 17576, 18000
Offset: 1
216 is in the sequence since rad(12) | rad(18), but 12 does not divide 18 and 18 does not divide 12.
432 is a term since rad(18) | rad(24), but 18 does not divide 24 and 24 does not divide 18.
Table of coreful divisors d, a(n)/d such that neither d | a(n)/d nor a(n)/d | d for select a(n)
n | a(n) divisor pairs d X a(n)/d
---------------------------------------------------------------------------
1 | 216: 12 X 18;
2 | 432: 18 X 24;
3 | 648: 12 X 54;
4 | 864: 24 X 36, 18 X 48;
5 | 1000: 20 X 50;
6 | 1296: 24 X 54;
7 | 1728: 18 X 96, 36 X 48;
8 | 1944: 12 X 162, 36 X 54;
9 | 2000: 40 X 50;
10 | 2592: 24 X 108, 48 X 54;
11 | 2744: 28 X 98;
12 | 3375: 45 X 75;
13 | 3456: 18 X 192, 36 X 96, 48 X 72;
22 | 7776: 24 X 324, 48 X 162, 54 X 144, 72 X 108;
58 | 31104: 48 X 648, 54 X 576, 96 X 324, 108 X 288, 144 X 216, 162 X 192
Cf.
A007947,
A030078,
A085986,
A126706,
A162142,
A177493,
A286708,
A307958,
A320966,
A361430,
A370329,
A372695,
A376514.
-
Union@ Select[
Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[#/b^3]}] &[20000],
Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]
A369374
Powerful numbers k that have a primorial kernel and more than 1 distinct prime factor.
Original entry on oeis.org
36, 72, 108, 144, 216, 288, 324, 432, 576, 648, 864, 900, 972, 1152, 1296, 1728, 1800, 1944, 2304, 2592, 2700, 2916, 3456, 3600, 3888, 4500, 4608, 5184, 5400, 5832, 6912, 7200, 7776, 8100, 8748, 9000, 9216, 10368, 10800, 11664, 13500, 13824, 14400, 15552, 16200
Offset: 1
This sequence is the union of the following infinite sets:
P(2)^2 * A003586 = {36, 72, 108, 144, 216, 288, 324, ...}
= { m*P(2)^2 : rad(m) | P(2) }.
P(3)^2 * A051037 = {900, 1800, 2700, 3600, 4500, 5400, ...}
= { m*P(3)^2 : rad(m) | P(3) }.
P(4)^2 * A002473 = {44100, 88200, 132300, 176400, ...}
= { m*P(4)^2 : rad(m) | P(4) }, etc.
Cf.
A001221,
A001222,
A001694,
A002110,
A007947,
A055932,
A126706,
A286708,
A364930,
A367268,
A369417.
-
With[{nn = 2^14},
Select[
Select[Rest@ Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}],
Not@*PrimePowerQ],
And[EvenQ[#],
Union@ Differences@ PrimePi[FactorInteger[#][[All, 1]]] == {1}] &] ]
A364930
Products of primorials that are squareful but not prime powers.
Original entry on oeis.org
36, 72, 144, 216, 288, 432, 576, 864, 900, 1152, 1296, 1728, 1800, 2304, 2592, 3456, 3600, 4608, 5184, 5400, 6912, 7200, 7776, 9216, 10368, 10800, 13824, 14400, 15552, 18432, 20736, 21600, 27000, 27648, 28800, 31104, 32400, 36864, 41472, 43200, 44100, 46656, 54000
Offset: 1
-
(* Load May 19 2018 function f at A025487, then run the following: *)
Select[Union@ Flatten@ f[k], And[PrimeOmega[#] > PrimeNu[#] > 1, AllTrue[FactorInteger[#][[All, -1]], # > 1 &] ] &]
A364702
Numbers k in A361098 that are not divisible by A007947(k)^2.
Original entry on oeis.org
48, 50, 54, 75, 80, 96, 98, 112, 135, 147, 160, 162, 189, 192, 224, 240, 242, 245, 250, 252, 270, 294, 300, 320, 336, 338, 350, 352, 360, 363, 375, 378, 384, 396, 405, 416, 448, 450, 468, 480, 486, 490, 504, 507, 525, 528, 540, 550, 560, 567, 578, 588, 594, 600
Offset: 1
Let B = A126706.
B(1) = 12 is not in the sequence since 3*6 > 12.
B(2) = 18 is not in the sequence, since, though 3*6 = 18, 5*6 > 18.
B(6) = S(1) = 36 is not in the sequence since, though 3*6 < 36 and 5*6 < 36, rad(36)^2 = 6^2 | 36, hence B(6) = T(1).
B(10) = S(2) = a(1) = 48 is in the sequence since rad(48) = 6, and 6^2 does not divide 48.
B(11) = S(3) = a(2) = 50 is in the sequence since rad(50) = 10, and 10^2 does not divide 50, etc.
-
nn = 2^10; a053669[n_] := If[OddQ[n], 2, p = 2; While[Divisible[n, p], p = NextPrime[p]]; p]; s = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]; Reap[Do[n = s[[j]]; If[And[#1*a053669[n] < n, #1*#2 <= n, ! Divisible[n, #1^2]] & @@ {Times @@ #, #[[2]]} &@ FactorInteger[n][[All, 1]], Sow[n]], {j, Length[s]}] ][[-1, -1]]
A365308
Powers of primorials P(k)^m, k > 1, m > 1, where P(k) = A002110(k).
Original entry on oeis.org
36, 216, 900, 1296, 7776, 27000, 44100, 46656, 279936, 810000, 1679616, 5336100, 9261000, 10077696, 24300000, 60466176, 362797056, 729000000, 901800900, 1944810000, 2176782336, 12326391000, 13060694016, 21870000000, 78364164096, 260620460100, 408410100000, 470184984576
Offset: 1
Terms less than 10^4 include P(2)^2 = 36, P(2)^3 = 216, P(2)^4 = 1296, P(2)^5 = 7776, and P(3)^2 = 900.
- Michael De Vlieger, Table of n, a(n) for n = 1..4935
- Michael De Vlieger, 1024 X 1024 Bitmap showing A322793(n) in black if a power of 2 (i.e., in A000079) else white if in this sequence, n = 1..2^20, arranged from left to right in rows, then from top to bottom.
-
nn = 2^39; k = 2; P = 6; Union@ Reap[While[j = 2; While[P^j < nn, Sow[P^j]; j++]; j > 2, k++; P *= Prime[k]] ][[-1, 1]]
A368682
Products of primorials that are perfect powers but not prime powers.
Original entry on oeis.org
36, 144, 216, 576, 900, 1296, 1728, 2304, 3600, 5184, 7776, 9216, 13824, 14400, 20736, 27000, 32400, 36864, 44100, 46656, 57600, 82944, 110592, 129600, 147456, 176400, 186624, 216000, 230400, 248832, 279936, 331776, 373248, 518400, 589824, 705600, 746496, 810000
Offset: 1
b(n) = A025487(n).
a(1) = b(11) = 36 = 6^2 = b(4)^2,
a(2) = b(19) = 144 = 12^2 = b(6)^2,
a(3) = b(23) = 216 = 6^3 = b(4)^3,
a(4) = b(33) = 576 = 24^2 = b(8)^2,
a(5) = b(38) = 900 = 30^2 = b(9)^2, etc.
-
Select[Range[36, 2^18, 2], And[Union@ Differences@ PrimePi@ #1 == {1}, AllTrue[Union@ Differences@ #2, # <= 0 &], GCD @@ #2 > 1] & @@ Transpose@ FactorInteger[#] &]
Comments