cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 80 results. Next

A328169 GCD of the prime indices of n, all plus 1.

Original entry on oeis.org

0, 2, 3, 2, 4, 1, 5, 2, 3, 2, 6, 1, 7, 1, 1, 2, 8, 1, 9, 2, 1, 2, 10, 1, 4, 1, 3, 1, 11, 1, 12, 2, 3, 2, 1, 1, 13, 1, 1, 2, 14, 1, 15, 2, 1, 2, 16, 1, 5, 2, 1, 1, 17, 1, 2, 1, 3, 1, 18, 1, 19, 2, 1, 2, 1, 1, 20, 2, 1, 1, 21, 1, 22, 1, 1, 1, 1, 1, 23, 2, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2019

Keywords

Comments

Zeros are ignored when computing GCD, and the empty set has GCD 0.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			85 has prime indices {3,7}, so a(85) = GCD(4,8) = 4.
		

Crossrefs

Positions of 0's and 1's are A318981.
Positions of records (first appearances) appear to be A116974.
The GCD of the prime indices of n, all minus 1, is A328167(n).
The LCM of the prime indices of n, all plus 1, is A328219(n).
Partitions whose parts plus 1 are relatively prime are A318980.

Programs

  • Mathematica
    Table[GCD@@(PrimePi/@First/@If[n==1,{},FactorInteger[n]]+1),{n,100}]

Formula

a(n) = A289508(A003961(n)).

A316433 Number of integer partitions of n whose length is equal to the LCM of all parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 2, 1, 4, 3, 4, 4, 8, 5, 7, 8, 10, 8, 13, 13, 20, 18, 25, 25, 36, 34, 48, 52, 64, 64, 85, 85, 108, 106, 129, 133, 160, 158, 189, 194, 229, 228, 276, 279, 332, 336, 394, 402, 476, 489, 572, 599, 699, 728, 845, 889, 1032, 1094, 1251, 1332, 1523
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2018

Keywords

Examples

			The a(13) = 8 partitions are (4441), (55111), (322222), (332221), (333211), (622111), (631111), (7111111).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],LCM@@#==Length[#]&]],{n,30}]
  • PARI
    a(n) = {my(nb = 0); forpart(p=n, if (lcm(Vec(p))==#p, nb++);); nb;} \\ Michel Marcus, Jul 03 2018

A319333 Heinz numbers of integer partitions whose sum is equal to their LCM.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 198, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of partitions whose Heinz numbers are in the sequence begins: (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (3,2,1), (11), (12).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],LCM@@primeMS[#]==Total[primeMS[#]]&]

A320459 MM-numbers of labeled multigraphs spanning an initial interval of positive integers.

Original entry on oeis.org

1, 13, 169, 377, 611, 1363, 1937, 2021, 2117, 2197, 4901, 7943, 10933, 16211, 17719, 25181, 26273, 27521, 28561, 28717, 39527, 44603, 56173, 58609, 61393, 63713, 64061, 83291, 86903, 91031, 91039, 94987, 99499, 103259, 141401, 142129, 143663, 146653, 147533
Offset: 1

Views

Author

Gus Wiseman, Oct 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
      1: {}
     13: {{1,2}}
    169: {{1,2},{1,2}}
    377: {{1,2},{1,3}}
    611: {{1,2},{2,3}}
   1363: {{1,3},{2,3}}
   1937: {{1,2},{3,4}}
   2021: {{1,4},{2,3}}
   2117: {{1,3},{2,4}}
   2197: {{1,2},{1,2},{1,2}}
   4901: {{1,2},{1,2},{1,3}}
   7943: {{1,2},{1,2},{2,3}}
  10933: {{1,2},{1,3},{1,3}}
  16211: {{1,2},{1,3},{1,4}}
  17719: {{1,2},{1,3},{2,3}}
  25181: {{1,2},{1,2},{3,4}}
  26273: {{1,2},{1,4},{2,3}}
  27521: {{1,2},{1,3},{2,4}}
  28561: {{1,2},{1,2},{1,2},{1,2}}
  28717: {{1,2},{2,3},{2,3}}
  39527: {{1,3},{1,3},{2,3}}
  44603: {{1,2},{2,3},{2,4}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[100000],And[normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],Length[primeMS[#]]==2]&/@primeMS[#])]&]

A320532 MM-numbers of labeled hypergraphs with multiset edges and no singletons spanning an initial interval of positive integers.

Original entry on oeis.org

1, 7, 13, 19, 37, 53, 61, 89, 91, 113, 131, 133, 151, 161, 223, 247, 251, 259, 281, 299, 311, 329, 359, 371, 377, 427, 437, 463, 481, 503, 593, 611, 623, 659, 667, 689, 703, 719, 721, 791, 793, 827, 851, 863, 893, 917, 923, 953, 1007, 1057, 1069, 1073, 1157
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
    1: {}
    7: {{1,1}}
   13: {{1,2}}
   19: {{1,1,1}}
   37: {{1,1,2}}
   53: {{1,1,1,1}}
   61: {{1,2,2}}
   89: {{1,1,1,2}}
   91: {{1,1},{1,2}}
  113: {{1,2,3}}
  131: {{1,1,1,1,1}}
  133: {{1,1},{1,1,1}}
  151: {{1,1,2,2}}
  161: {{1,1},{2,2}}
  223: {{1,1,1,1,2}}
  247: {{1,2},{1,1,1}}
  251: {{1,2,2,2}}
  259: {{1,1},{1,1,2}}
  281: {{1,1,2,3}}
  299: {{1,2},{2,2}}
  311: {{1,1,1,1,1,1}}
  329: {{1,1},{2,3}}
  359: {{1,1,1,2,2}}
  371: {{1,1},{1,1,1,1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[1000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(And[PrimeOmega[#]>1]&/@primeMS[#])]&]

A320533 MM-numbers of labeled multi-hypergraphs with multiset edges and no singletons spanning an initial interval of positive integers.

Original entry on oeis.org

1, 7, 13, 19, 37, 49, 53, 61, 89, 91, 113, 131, 133, 151, 161, 169, 223, 247, 251, 259, 281, 299, 311, 329, 343, 359, 361, 371, 377, 427, 437, 463, 481, 503, 593, 611, 623, 637, 659, 667, 689, 703, 719, 721, 791, 793, 827, 851, 863, 893, 917, 923, 931, 953
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
    1: {}
    7: {{1,1}}
   13: {{1,2}}
   19: {{1,1,1}}
   37: {{1,1,2}}
   49: {{1,1},{1,1}}
   53: {{1,1,1,1}}
   61: {{1,2,2}}
   89: {{1,1,1,2}}
   91: {{1,1},{1,2}}
  113: {{1,2,3}}
  131: {{1,1,1,1,1}}
  133: {{1,1},{1,1,1}}
  151: {{1,1,2,2}}
  161: {{1,1},{2,2}}
  169: {{1,2},{1,2}}
  223: {{1,1,1,1,2}}
  247: {{1,2},{1,1,1}}
  251: {{1,2,2,2}}
  259: {{1,1},{1,1,2}}
  281: {{1,1,2,3}}
  299: {{1,2},{2,2}}
  311: {{1,1,1,1,1,1}}
  329: {{1,1},{2,3}}
  343: {{1,1},{1,1},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[1000],And[normQ[primeMS/@primeMS[#]],And@@(And[PrimeOmega[#]>1]&/@primeMS[#])]&]

A316556 Number of distinct LCMs of nonempty submultisets of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 3, 2, 3, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 4, 1, 2, 3, 4, 1, 2, 1, 2, 3, 2, 3, 3, 1, 2, 1, 2, 1, 3, 3, 2, 2, 2, 1, 4, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 4, 1, 2, 5
Offset: 1

Views

Author

Gus Wiseman, Jul 06 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Number of distinct values obtained when A290103 is applied to all divisors of n larger than one. - Antti Karttunen, Sep 25 2018

Examples

			462 is the Heinz number of (5,4,2,1) which has possible LCMs of nonempty submultisets {1,2,4,5,10,20} so a(462) = 6.
		

Crossrefs

Cf. also A304793, A305611, A319685, A319695 for other similarly constructed sequences.

Programs

  • Mathematica
    Table[Length[Union[LCM@@@Rest[Subsets[If[n==1,{},Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]]]]]]],{n,100}]
  • PARI
    A290103(n) = lcm(apply(p->primepi(p),factor(n)[,1]));
    A316556(n) = { my(m=Map(),s,k=0); fordiv(n,d,if((d>1)&&!mapisdefined(m,s=A290103(d)), mapput(m,s,s); k++)); (k); }; \\ Antti Karttunen, Sep 25 2018

Extensions

More terms from Antti Karttunen, Sep 25 2018

A319826 GCD of the strict integer partition with FDH number n; GCD of the indices (in A050376) of Fermi-Dirac prime factors of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 2, 9, 10, 1, 11, 1, 1, 1, 12, 1, 13, 1, 2, 1, 14, 1, 15, 1, 1, 1, 1, 3, 16, 1, 2, 1, 17, 1, 18, 1, 2, 1, 19, 1, 20, 1, 2, 1, 21, 1, 1, 1, 1, 1, 22, 1, 23, 1, 1, 3, 4, 1, 24, 1, 2, 1, 25, 1, 26, 1, 1, 1, 1, 1, 27, 1, 28
Offset: 1

Views

Author

Gus Wiseman, Sep 28 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1, ..., y_k) is f(y_1) * ... * f(y_k).

Examples

			45 is the FDH number of (6,4), which has GCD 2, so a(45) = 2.
		

Crossrefs

Programs

  • Mathematica
    nn=200;
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    GCD@@@Table[Reverse[FDfactor[n]/.FDrules],{n,nn}]
  • PARI
    A319826(n) = { my(i=1,g=0,x=A052331(n)); while(x,if(x%2,g = gcd(g,i)); x>>=1; i++); (g); }; \\ (Uses the program given in A052331) - Antti Karttunen, Feb 18 2023

Formula

For all n >= 1, a(A050376(n)) = n. - Antti Karttunen, Feb 18 2023

Extensions

Secondary definition added by Antti Karttunen, Feb 18 2023

A327778 Number of integer partitions of n whose LCM is a multiple of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 11, 1, 11, 23, 1, 1, 23, 1, 85, 85, 45, 1, 152, 1, 84, 1, 451, 1, 1787, 1, 1, 735, 260, 1925, 1908, 1, 437, 1877, 4623, 1, 14630, 1, 6934, 10519, 1152, 1, 6791, 1, 1817, 10159, 22556, 1, 2819, 47927, 69333, 22010, 4310, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2019

Keywords

Examples

			The partitions of n = 6, 10, 12, and 15 whose LCM is a multiple of n:
  (6)      (10)         (12)             (15)
  (3,2,1)  (5,3,2)      (5,4,3)          (6,5,4)
           (5,4,1)      (6,4,2)          (7,5,3)
           (5,2,2,1)    (8,3,1)          (9,5,1)
           (5,2,1,1,1)  (4,3,3,2)        (10,3,2)
                        (4,4,3,1)        (5,4,3,3)
                        (6,4,1,1)        (5,5,3,2)
                        (4,3,2,2,1)      (6,5,2,2)
                        (4,3,3,1,1)      (6,5,3,1)
                        (4,3,2,1,1,1)    (10,3,1,1)
                        (4,3,1,1,1,1,1)  (5,3,3,2,2)
                                         (5,3,3,3,1)
                                         (5,4,3,2,1)
                                         (5,5,3,1,1)
                                         (6,5,2,1,1)
                                         (5,3,2,2,2,1)
                                         (5,3,3,2,1,1)
                                         (5,4,3,1,1,1)
                                         (6,5,1,1,1,1)
                                         (5,3,2,2,1,1,1)
                                         (5,3,3,1,1,1,1)
                                         (5,3,2,1,1,1,1,1)
                                         (5,3,1,1,1,1,1,1,1)
		

Crossrefs

The Heinz numbers of these partitions are given by A327783.
Partitions whose LCM is equal to their sum are A074761.
Partitions whose LCM is greater than their sum are A327779.
Partitions whose LCM is less than their sum are A327781.

Programs

  • Maple
    a:= proc(m) option remember; local b; b:=
          proc(n, i, l) option remember; `if`(n=0 or i=1,
            `if`(l=m, 1, 0), `if`(i<2, 0, b(n, i-1, l))+
             b(n-i, min(n-i, i), igcd(m, ilcm(l, i))))
          end; `if`(isprime(m), 1, b(m$2, 1))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 26 2019
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[LCM@@#,n]&]],{n,30}]
    (* Second program: *)
    a[m_] := a[m] = Module[{b}, b[n_, i_, l_] := b[n, i, l] = If[n == 0 || i == 1, If[l == m, 1, 0], If[i<2, 0, b[n, i - 1, l]] + b[n - i, Min[n - i, i], GCD[m, LCM[l, i]]]]; If[PrimeQ[m], 1, b[m, m, 1]]];
    a /@ Range[0, 60] (* Jean-François Alcover, May 18 2021, after Alois P. Heinz *)

Formula

a(n) = 1 <=> n in { A000961 }. - Alois P. Heinz, Sep 26 2019

A328219 LCM of the prime indices of n, all plus 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 6, 5, 2, 3, 4, 6, 6, 7, 10, 12, 2, 8, 6, 9, 4, 15, 6, 10, 6, 4, 14, 3, 10, 11, 12, 12, 2, 6, 8, 20, 6, 13, 18, 21, 4, 14, 30, 15, 6, 12, 10, 16, 6, 5, 4, 24, 14, 17, 6, 12, 10, 9, 22, 18, 12, 19, 12, 15, 2, 28, 6, 20, 8, 30, 20, 21, 6, 22, 26
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

Sorted positions of first appearances are A328451.
LCM of prime indices is A290103.
LCM of prime indices minus 1 is A328456.
GCD of prime indices plus 1 is A328169.
Partitions whose parts plus 1 are relatively prime are A318980.
Numbers whose prime indices plus 1 are relatively prime are A318981,

Programs

  • Mathematica
    Table[If[n==1,1,LCM@@(PrimePi/@First/@FactorInteger[n]+1)],{n,100}]
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A290103(n) = lcm(apply(p->primepi(p),factor(n)[,1]));
    A328219(n) = A290103(A003961(n)); \\ Antti Karttunen, Oct 18 2019

Formula

a(n) = A290103(A003961(n)).
If n = A000040(i_1) * ... * A000040(i_k), then a(n) = lcm(1+i_1,...,1+i_k).
Previous Showing 31-40 of 80 results. Next