cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A001508 a(n) is the number of c-nets with n+1 vertices and 2n+2 edges, n >= 1.

Original entry on oeis.org

0, 0, 0, 0, 13, 252, 3740, 51300, 685419, 9095856, 120872850, 1614234960, 21697730835, 293695935764, 4003423965684, 54944523689692, 758990230992175, 10548884795729280, 147458773053913268, 2072369440050644208, 29271357456284966994
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A290326.

Programs

  • PARI
    A290326(n,k) = {
      if (n < 3 || k < 3, return(0));
      sum(i=0, k-1, sum(j=0, n-1,
         (-1)^((i+j+1)%2) * binomial(i+j, i)*(i+j+1)*(i+j+2)/2*
         (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) -
          4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2))));
    };
    vector(21, n, A290326(n+2,n)) \\ Gheorghe Coserea, Jul 28 2017

Formula

a(n) = A290326(n+2,n). - Gheorghe Coserea, Jul 28 2017

Extensions

Corrected and extended by Sean A. Irvine, Sep 29 2015
Name changed by Gheorghe Coserea, Jul 23 2017

A096330 Number of 3-connected planar graphs on n labeled nodes.

Original entry on oeis.org

1, 25, 1227, 84672, 7635120, 850626360, 112876089480, 17381709797760, 3046480841900160, 598731545755324800, 130389773403373545600, 31163616486434838067200, 8109213009296586130944000, 2282014010657773764160588800, 690521215428258768326957184000
Offset: 4

Views

Author

Steven Finch, Aug 02 2004

Keywords

Comments

Recurrence known, see Bodirsky et al.

References

  • M. Bodirsky, C. Groepl and M. Kang: Generating Labeled Planar Graphs Uniformly At Random; ICALP03 Eindhoven, LNCS 2719, Springer Verlag (2003), 1095 - 1107.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 419.

Crossrefs

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    a(n) = sum(k=(3*n+1)\2, 3*n-6, n!*Q(k,n)/(4*k));
    apply(a, [4..18]) \\ Gheorghe Coserea, Aug 11 2017

A106651 c(n) = number of c-nets on n vertices.

Original entry on oeis.org

1, 1, 7, 73, 879, 11713, 167423, 2519937, 39458047, 637446145, 10561615871, 178683815937, 3076487458815, 53766284722177, 951817354412031, 17039752595865601, 308068940431556607, 5618467344224354305
Offset: 3

Views

Author

Daniel Johannsen (johannse(AT)informatik.hu-berlin.de), May 12 2005

Keywords

Comments

Definition of c-net: a 3-connected planar map, rooted by a directed edge on the outer face.

Examples

			c(0)=c(1)=1 because the only c-nets on 3 respectively 4 vertices are the complete graphs.
		

Crossrefs

Programs

  • Mathematica
    c[0] = 1; c[1] = 1; c[2] = 7; c[3] = 73; c[4] = 879; c[5] = 11713; c[6] = 167423; c[7] = 2519937; c[n_] := c[n] = ( (-189665280 + 134270976 n - 31309824 n^2 + 2408448 n^3) c[n - 7] + (-479162880 + 376680448 n - 98932224 n^2 + 8692736 n^3) c[n - 6] + (-446660160 + 384601888 n - 112131264 n^2 + 11026784 n^3) c[n - 5] + (-183645792 + 168826836 n - 52598160 n^2 + 5361276 n^3) c[n - 4] + (-25324080 + 24563948 n - 6853668 n^2 + 418816 n^3) c[n - 3] + (1156086 - 2064937 n + 1206966 n^2 - 180467 n^3) c[n - 2] + (-3192 + 4842 n - 29796 n^2 + 18930 n^3) c[n - 1] ) / (126 + 693 n + 1134 n^2 + 567 n^3);
  • PARI
    x='x; y='y;
    system("wget http://oeis.org/A106651/a106651.txt");
    Fxy = read("a106651.txt");
    seq(N) = {
      my(y0 = 1 + O('x^N), y1=0);
      for (k = 1, N,
        y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
        if (y1 == y0, break()); y0 = y1);
      Vec(y0);
    };
    seq(18)  \\ Gheorghe Coserea, Jan 08 2017
    
  • PARI
    A290326(n,k) = {
      if (n < 3 || k < 3, return(0));
      sum(i=0, k-1, sum(j=0, n-1,
         (-1)^((i+j+1)%2) * binomial(i+j, i)*(i+j+1)*(i+j+2)/2*
         (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) -
          4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2))));
    };
    a(n) = if (n==3, 1, sum(k = (n+3)\2, 2*n-5, A290326(n-1, k)));
    vector(18, n, a(n+2)) \\ Gheorghe Coserea, Jul 28 2017

Formula

c(0)=1, c(1) = 1, c(2) = 7, c(3) = 73, c(4) = 879, c(5) = 11713, c(6) = 167423, c(7) = 2519937, c(n) = ( (-189665280 + 134270976 n - 31309824 n^2 + 2408448 n^3) c(n-7) + (-479162880 + 376680448 n - 98932224 n^2 + 8692736 n^3) c(n-6) + (-446660160 + 384601888 n - 112131264 n^2 + 11026784 n^3) c(n-5) + (-183645792 + 168826836 n - 52598160 n^2 + 5361276 n^3) c(n-4) + (-25324080 + 24563948 n - 6853668 n^2 + 418816 n^3) c(n-3) + (1156086 - 2064937 n + 1206966 n^2 - 180467 n^3) c(n-2) + (-3192 + 4842 n - 29796 n^2 + 18930 n^3) c(n-1) ) / (126 + 693 n + 1134 n^2 + 567 n^3). Generating function C(t)=sum_(n>=0){c(n-3)t^n} implicitly given by: 0 = -1 + C(t) + 36 t - 43 C(t) t + 6 C(t)^2 t + 131 t^2 - 337 C(t) t^2 + 218 C(t)^2 t^2 + 12 C(t)^3 t^2 + 350 t^3 - 1021 C(t) t^3 + 894 C(t)^2 t^3 - 228 C(t)^3 t^3 + 8 C(t)^4 t^3 + 540 t^4 - 1828 C(t) t^4 + 2190 C(t)^2 t^4 - 988 C(t)^3 t^4 + 72 C(t)^4 t^4 + 616 t^5 - 2404 C(t) t^5 + 3284 C(t)^2 t^5 - 1756 C(t)^3 t^5 + 264 C(t)^4 t^ 5 + 536 t^6 - 2128 C(t) t^6 + 3120 C(t)^2 t^6 - 2032 C(t)^3 t^6 + 504 C(t)^4 t^6 + 304 t^7 - 1344 C(t) t^7 + 2304 C(t)^2 t^7 - 1792 C(t)^3 t^7 + 528 C(t)^4 t^7 + 160 t^8 - 768 C(t) t^8 + 1344 C(t)^2 t^8 - 1024 C(t)^3 t^8 + 288 C(t)^4 t^8 + 64 t^9 - 256 C(t) t^9 + 384 C(t)^2 t^9 - 256 C(t)^3 t^9 + 64 C(t)^4 t^9. Explicit generating function can be obtained using Mathematica.

Extensions

Mathematica code improved by David Radcliffe, Feb 12 2011

A318101 Number of rooted 2-connected 4-regular planar maps, which may have loops, with n inner faces.

Original entry on oeis.org

2, 9, 30, 154, 986, 6977, 52590, 415678, 3409032, 28787498, 248930292, 2195238596, 19682012382, 178974809121, 1647460326046, 15327261314934, 143942130406288, 1363094805806462, 13004498819335396, 124900418475706476, 1206861624598185332, 11725558427958257690, 114494070652568918380
Offset: 2

Views

Author

Gheorghe Coserea, Aug 16 2018

Keywords

Examples

			A(x) = 2*x^2 + 9*x^3 + 30*x^4 + 154*x^5 + 986*x^6 + 6977*x^7 + 52590*x^8 + ...
		

Crossrefs

Programs

  • PARI
    F = (1 - z + 2*z^3*x*(1 - x))/(2*z*(1 - z^2*x));
    G = x*(4*x^2 + 1)*z^4 - 4*x*(2*x - 1)*z^3 - 5*x*z^2 + 2*(2*x - 1)*z + 2;
    Z(N) = {
      my(z0=1+O('x^N), z1=0, n=1);
      while (n++,
        z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
        if (z1 == z0, break()); z0 = z1);
      z0;
    };
    seq(N) = Vec((1 + 2*x)*subst(F, 'z, Z(N+2)));
    seq(23)
    \\ test: y=Ser(seq(303))*x^2; 0 == 8*y^4 + 4*(2*x + 1)*(2*x + 3)*y^3 - (x - 6)*(2*x + 1)^2*y^2 + (2*x + 1)^3*(18*x^2 - 16*x + 1)*y + x^2*(2*x + 1)^4*(27*x - 2)

Formula

G.f.: (1 + 2*x)*F, where F = (1 - z + 2*z^3*x*(1 - x))/(2*z*(1 - z^2*x)) and z = 1 + 2*x + 6*x^2 + 34*x^3 + 254*x^4 + 2052*x^5 + 17332*x^6 + 151658*x^7 + ... satisfies 0 = x*(4*x^2 + 1)*z^4 - 4*x*(2*x - 1)*z^3 - 5*x*z^2 + 2*(2*x - 1)*z + 2. (see Theorem C in link)
G.f. y=A(x) satisfies:
0 = 8*y^4 + 4*(2*x + 1)*(2*x + 3)*y^3 - (x - 6)*(2*x + 1)^2*y^2 + (2*x + 1)^3*(18*x^2 - 16*x + 1)*y + x^2*(2*x + 1)^4*(27*x - 2).
0 = x^3*(2*x + 1)^4*(4*x^2 - 2*x + 1)*(108*x^2 - 304*x + 27)*(128*x^6 - 1504*x^5 + 5864*x^4 - 8282*x^3 + 4381*x^2 - 659*x + 60)*y'''' - x^2*(2*x + 1)^3*(417792*x^10 - 1973504*x^9 - 7891840*x^8 + 53958576*x^7 - 106786208*x^6 + 92663096*x^5 - 38721768*x^4 + 9604075*x^3 - 1447438*x^2 + 141966*x - 4860)*y''' + 3*x*(2*x + 1)^2*(163840*x^12 - 1929216*x^11 + 11348480*x^10 - 47888896*x^9 + 125855008*x^8 - 184580160*x^7 + 158611640*x^6 - 81013580*x^5 + 22892592*x^4 - 3821021*x^3 + 403960*x^2 - 23876*x + 120)*y'' - 12*(2*x + 1)*(163840*x^13 - 1888256*x^12 + 11294208*x^11 - 48430080*x^10 + 125093344*x^9 - 184709184*x^8 + 159190952*x^7 - 80413964*x^6 + 23140740*x^5 - 3792653*x^4 + 391233*x^3 - 28410*x^2 - 199*x + 30)*y' + 24*(163840*x^13 - 1847296*x^12 + 11198976*x^11 - 48855552*x^10 + 124699296*x^9 - 184627968*x^8 + 159583928*x^7 - 80114156*x^6 + 23238984*x^5 - 3787577*x^4 + 385076*x^3 - 30072*x^2 - 292*x + 40)*y.
a(n) ~ c / (sqrt(Pi) * n^(5/2) * r^n), where r = (76 - 7*sqrt(103))/54 and c = sqrt(3278181/(3125*(109592 + 10823*sqrt(103)))). - Vaclav Kotesovec, Aug 25 2018

A318102 Number of rooted 2-connected 4-regular maps on the projective plane, which may have loops, with n inner faces.

Original entry on oeis.org

5, 38, 199, 1466, 12365, 109700, 1003929, 9404402, 89690920, 867506788, 8486154214, 83790178300, 833805753167, 8352569222312, 84150924820499, 852039732062530, 8664839058268872, 88459350543053228, 906208005777385526, 9312350891307447116, 95963703215086597466, 991421114632619679480
Offset: 1

Views

Author

Gheorghe Coserea, Aug 19 2018

Keywords

Examples

			A(x) = 5*x + 38*x^2 + 199*x^3 + 1466*x^4 + 12365*x^5 + 109700*x^6 + ...
		

Crossrefs

Programs

  • PARI
    F = (1 - z + 2*z^3*x*(1 - x))/(2*z*(1 - z^2*x));
    G = x*(4*x^2 + 1)*z^4 - 4*x*(2*x - 1)*z^3 - 5*x*z^2 + 2*(2*x - 1)*z + 2;
    Z(N) = {
      my(z0=1+O('x^N), z1=0, n=1);
      while (n++,
        z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
        if (z1 == z0, break()); z0 = z1);
      z0;
    };
    f(N) = subst((z + 2*z*F - 1)/(2*z^2*x), 'z, Z(N));
    Fp2(N) = {
      my(z=Z(N), f=f(N));
      ((1 - sqrt(1 - 4*z^2*x*f))/(x*z) + z*(z-3)/2 * f^2 + 2*(f - 1))/(2*f - 1);
    };
    Fp4(N) = (1 + 2*x)*(Fp2(N) - 1) + 3*subst(F, 'z, Z(N+2));
    seq(N) = Vec(Fp4(N+1));
    seq(22)
    /* test:
    system("wget https://oeis.org/A318102/a318102.txt");
    apply_diffop(p, s) = { \\ apply diffop p (encoded as Pol in Dx) to Ser s
      s=intformal(s);
      sum(n=0, poldegree(p, 'Dx), s=s'; polcoeff(p, n, 'Dx) * s);
    };
    0 == apply_diffop(read("a318102.txt"), Fp4(1001))
    */

Formula

G.f.: (1 + 2*x)*(Fp2 - 1) + 3*F, where Fp2 and F are given by the system of algebraic equations:
0 = x*(4*x^2 + 1)*z^4 - 4*x*(2*x - 1)*z^3 - 5*x*z^2 + 2*(2*x - 1)*z + 2,
F = (1 - z + 2*z^3*x*(1 - x))/(2*z*(1 - z^2*x)),
f = (z + 2*z*F - 1)/(2*z^2*x),
Fp2 = ((1 - sqrt(1 - 4*z^2*x*f))/(x*z) + z*(z-3)/2 * f^2 + 2*(f - 1))/(2*f - 1).
The initial coefficients of the solutions are:
z = 1 + 2*x + 6*x^2 + 34*x^3 + 254*x^4 + 2052*x^5 + 17332*x^6 + ...,
F = 2*x^2 + 5*x^3 + 20*x^4 + 114*x^5 + 758*x^6 + 5461*x^7 + 41668*x^8 + ...,
f = 1 + x + 6*x^2 + 37*x^3 + 262*x^4 + 2050*x^5 + 17064*x^6 + ...,
Fp2 = 1 + 5*x + 22*x^2 + 140*x^3 + 1126*x^4 + 9771*x^5 + 87884*x^6 + ...
(see Facts 2-5 and Theorem B in the link)
G.f. y=A(x) satisfies:
0 = 4096*x^7*(4*x^2 - 2*x + 1)^2*y^8 + 2048*x^6*(4*x^2 - 2*x + 1)^2*(36*x^2 + 16*x - 7)*y^7 + 128*x^5*(4*x^2 - 2*x + 1)*(8320*x^6 + 19648*x^5 - 1076*x^4 - 1804*x^3 + 1907*x^2 - 580*x + 126)*y^6 + 32*x^4*(4*x^2 - 2*x + 1)*(225280*x^7 + 444240*x^6 + 84688*x^5 - 29552*x^4 + 32044*x^3 - 9577*x^2 + 976*x - 280)*y^5 + x^3*(40239104*x^11 - 79837184*x^10 + 295013376*x^9 - 58917488*x^8 + 30598624*x^7 + 31536856*x^6 - 14288200*x^5 + 7449849*x^4 - 1791392*x^3 + 303304*x^2 - 15680*x + 2800)*y^4 + 2*x^2*(272629760*x^13 - 24282112*x^12 - 175736320*x^11 + 322666592*x^10 - 42540704*x^9 + 44400384*x^8 + 30919616*x^7 - 7960626*x^6 + 8259482*x^5 - 2256409*x^4 + 613344*x^3 - 92803*x^2 + 2512*x - 252)*y^3 + x*(4137222144*x^14 + 1879746560*x^13 - 1113429024*x^12 + 1342878720*x^11 + 65189712*x^10 + 10079664*x^9 + 147999470*x^8 - 45142196*x^7 + 25711384*x^6 - 6520084*x^5 + 2042177*x^4 - 392900*x^3 + 48476*x^2 - 1064*x + 49)*y^2 - 2*(1128267776*x^16 - 4335727616*x^15 - 6678567648*x^14 + 1061181280*x^13 - 2785972352*x^12 + 213096160*x^11 - 166061526*x^10 - 112334126*x^9 + 50212017*x^8 - 27194278*x^7 + 7091863*x^6 - 1701882*x^5 + 350358*x^4 - 36314*x^3 + 2951*x^2 - 44*x + 1)*y + x*(17448304640*x^16 - 38432538624*x^15 + 29298729744*x^14 - 1261398240*x^13 + 9372670936*x^12 + 6841726488*x^11 + 1476038993*x^10 + 1644370884*x^9 + 177903076*x^8 + 98892200*x^7 + 15461596*x^6 - 2656592*x^5 + 901090*x^4 - 145464*x^3 + 25339*x^2 - 364*x + 10).

A318103 Number of rooted 2-connected loopless 4-regular maps on the projective plane with n inner faces.

Original entry on oeis.org

6, 21, 138, 781, 4836, 30099, 191698, 1236024, 8063492, 53086930, 352249244, 2352800079, 15805224904, 106702428453, 723509453442, 4924851788720, 33638721268140, 230477992427450, 1583550831926508, 10907729315809642, 75307599054762424, 521026923863915206, 3611800088179535100
Offset: 2

Views

Author

Gheorghe Coserea, Aug 20 2018

Keywords

Examples

			A(x) = 6*x^2 + 21*x^3 + 138*x^4 + 781*x^5 + 4836*x^6 + 30099*x^7 + ...
		

Crossrefs

Programs

  • PARI
    F = (2*z^3*x^2 + (2*z^3 - 2*z)*x + (-z + 1))/(-2*z^3*x + 2*z);
    G = x*(4*x + 1)*z^4 + 4*x*z^3 - 5*x*z^2 - 2*z + 2;
    Z(N) = {
      my(z0=1+O('x^N), z1=0, n=1);
      while (n++,
        z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
        if (z1 == z0, break()); z0 = z1);
      z0;
    };
    f(N) = subst((z - 1 + 2*z*x + 2*z*F)/(2*x*z^2), 'z, Z(N));
    Fp4(N) = {
      my(z=Z(N), f=f(N));
    ((1 - sqrt(1- 4*x*z^2*f))/(x*z) - z*f - x*(z*f)^3*(2 - f))/(2*f - 1) - 1;
    };
    seq(N) = Vec(Fp4(N+2));
    seq(23)
    /* test:
    system("wget https://oeis.org/A318103/a318103.txt");
    apply_diffop(p, s) = {
      s=intformal(s);
      sum(n=0, poldegree(p, 'Dx), s=s'; polcoeff(p, n, 'Dx) * s);
    };
    0 == apply_diffop(read("a318103.txt"), Fp4(1001))
    */

Formula

G.f.: ((1 - sqrt(1- 4*x*z^2*f))/(x*z) - z*f - x*(z*f)^3*(2 - f))/(2*f - 1) - 1, where z and f are given by the system of algebraic equations:
0 = x*(4*x + 1)*z^4 + 4*x*z^3 - 5*x*z^2 - 2*z + 2,
F = (2*z^3*x^2 + (2*z^3 - 2*z)*x + (-z + 1))/(-2*z^3*x + 2*z),
f = (z - 1 + 2*z*x + 2*z*F)/(2*x*z^2).
The initial coefficients of the solutions are:
z = 1 + 2*x^2 + 6*x^3 + 34*x^4 + 176*x^5 + 1004*x^6 + 5858*x^7 + ...
F = x^3 + 2*x^4 + 10*x^5 + 42*x^6 + 209*x^7 + 1066*x^8 + 5726*x^9 + ...
f = 1 + x + 2*x^2 + 9*x^3 + 42*x^4 + 222*x^5 + 1232*x^6 + 7137*x^7 + ...
(see Facts 6-7 and Theorem C in the link)
G.f. y=A(x) satisfies:
0 = 4096*x^7*(2*x + 1)^2*y^8 + 2048*x^6*(2*x + 1)^2*(16*x - 7)*y^7 + 128*x^5*(2*x + 1)*(1792*x^3 - 285*x^2 - 76*x + 126)*y^6 + 32*x^4*(2*x + 1)*(14336*x^4 - 2360*x^3 - 57*x^2 - 144*x - 280)*y^5 + x^3*(1146880*x^6 + 625920*x^5 + 282633*x^4 + 174368*x^3 + 44232*x^2 + 6720*x + 2800)*y^4 + 2*x^2*(2*x + 1)*(229376*x^6 + 108288*x^5 + 419113*x^4 + 53390*x^3 - 39619*x^2 + 1000*x - 252)*y^3 + x*(458752*x^8 + 740608*x^7 + 3399862*x^6 + 1371564*x^5 - 317093*x^4 - 58308*x^3 + 25400*x^2 - 672*x + 49)*y^2 + 2*(65536*x^9 + 162048*x^8 + 1258098*x^7 + 287981*x^6 - 86682*x^5 + 22504*x^4 + 5250*x^3 - 2026*x^2 + 36*x - 1)*y + x^2*(16384*x^7 + 58112*x^6 + 674825*x^5 + 33912*x^4 + 11954*x^3 + 23076*x^2 - 390*x + 12).
From Vaclav Kotesovec, Aug 25 2018: (Start)
a(n) ~ c1 * (196/27)^n / n^(5/4) * (1 + c2/n^(1/4) + c3/n^(1/2)), where
c1 = 7^(5/4) * Gamma(1/4) / (5^(5/4) * 3^(3/4) * Pi),
c2 = -17 * 7^(1/4) * sqrt(Pi) / (3^(7/4) * 5^(1/4) * Gamma(1/4)),
c3 = 71 * sqrt(7) * Pi / (2^(3/2) * sqrt(3) * 5^(3/2) * Gamma(1/4)^2). (End)

A288266 Triangle read by rows: T(n,k) is the number of labeled planar graphs on n vertices and k edges.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 1, 1, 6, 15, 20, 15, 6, 1, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 15, 105, 455, 1365, 3003, 5005, 6435, 6435, 4995, 2937, 1125, 195, 1, 21, 210, 1330, 5985, 20349, 54264, 116280, 203490, 293860, 351225, 342405, 255640, 131985, 40950, 5712, 1, 28, 378, 3276, 20475, 98280, 376740, 1184040, 3108105, 6906620, 13112694, 21322812, 29332947, 32823084, 28286520, 17712016, 7513632, 1922760, 223440
Offset: 0

Views

Author

Gheorghe Coserea, Aug 14 2017

Keywords

Comments

Row n >= 3 contains 3*n-5 terms.

Examples

			A(x;t) = 1 + x + (1+t)*x^2/2! + (1+3*t+3*t^2+t^3)*x^3/3! + (1+6*t+15*t^2+20*t^3+15*t^4+6*t^5+t^6)*x^4/4! + ...
Triangle starts:
n\k [0] [1] [2]  [3]  [4]   [5]   [6]   [7]   [8]   [9]   [10]  [11]  [12]
[0] 1;
[1] 1;
[2] 1   1;
[3] 1,  3,  3,   1;
[4] 1,  6,  15,  20,  15,   6,    1;
[5] 1,  10, 45,  120, 210,  252,  210,  120,  45,   10;
[6] 1,  15, 105, 455, 1365, 3003, 5005, 6435, 6435, 4995, 2937, 1125, 195;
[7] ...
		

Crossrefs

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    A100960_ser(N) = {
    my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)),
       q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n,k)),'t))),
       d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
       g2=intformal(t^2/2*((1+d)/(1+x)-1)));
       serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n,'t),'x,'t)))*'x);
    };
    A288266_seq(N) = {
      my(x='x+O('x^(N+3)), b=t*x^2/2 + serconvol(A100960_ser(N), exp(x)),
         g1=intformal(serreverse(x/exp(b'))/x));
      apply(p->Vecrev(p), Vec(serlaplace(exp(g1))));
    };
    concat(A288266_seq(8))

Formula

A066537(n) = Sum_{k=0..3*n-6} T(n,k) for n >= 3.
A007816(n-3) = T(n, 3*n-6).

A343871 Number of labeled 3-connected planar graphs with n edges.

Original entry on oeis.org

1, 0, 15, 70, 432, 4320, 30855, 294840, 2883240, 28175952, 310690800, 3458941920, 40459730640, 499638948480, 6324655705200, 83653192972800, 1145266802114400, 16145338385736000, 235579813593453000, 3535776409508703360, 54571687068401395200, 866268656574795936000
Offset: 6

Views

Author

Andrew Howroyd, May 05 2021

Keywords

Crossrefs

Cf. A000287, A002840 (unlabeled case), A096330, A290326, A291841, A338414.

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices (see A290326)
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    a(n)={sum(k=2+(n+2)\3, 2*n\3, k!*Q(n,k))/(4*n)} \\ Andrew Howroyd, May 05 2021

Formula

a(n) = Sum_{k=2+floor((n+2)/3)..floor(2*n/3)} k!*A290326(n-k+1, k-1)/(4*n).
Previous Showing 11-18 of 18 results.