cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 57 results. Next

A325708 Numbers n whose prime indices cover an initial interval of positive integers and include all prime exponents of n.

Original entry on oeis.org

1, 2, 6, 12, 18, 30, 36, 60, 90, 120, 150, 180, 210, 270, 300, 360, 420, 450, 540, 600, 630, 750, 840, 900, 1050, 1080, 1260, 1350, 1470, 1500, 1680, 1800, 1890, 2100, 2250, 2310, 2520, 2700, 2940, 3000, 3150, 3780, 4200, 4410, 4500, 4620, 5040, 5250, 5400
Offset: 1

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions covering an initial interval of positive integers and containing all of their distinct multiplicities. The enumeration of these partitions by sum is given by A325707.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     6: {1,2}
    12: {1,1,2}
    18: {1,2,2}
    30: {1,2,3}
    36: {1,1,2,2}
    60: {1,1,2,3}
    90: {1,2,2,3}
   120: {1,1,1,2,3}
   150: {1,2,3,3}
   180: {1,1,2,2,3}
   210: {1,2,3,4}
   270: {1,2,2,2,3}
   300: {1,1,2,3,3}
   360: {1,1,1,2,2,3}
   420: {1,1,2,3,4}
   450: {1,2,2,3,3}
   540: {1,1,2,2,2,3}
   600: {1,1,1,2,3,3}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],#==1||Range[PrimeNu[#]]==PrimePi/@First/@FactorInteger[#]&&SubsetQ[PrimePi/@First/@FactorInteger[#],Last/@FactorInteger[#]]&]

A298534 Matula-Goebel numbers of rooted trees such that every branch of the root has the same number of leaves.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 29, 30, 31, 32, 33, 36, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 53, 54, 55, 59, 60, 61, 62, 64, 66, 67, 71, 72, 73, 75, 79, 80, 81, 83, 88, 89, 90, 91, 93, 96, 97, 99, 100
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2018

Keywords

Examples

			Sequence of trees begins:
1  o
2  (o)
3  ((o))
4  (oo)
5  (((o)))
6  (o(o))
7  ((oo))
8  (ooo)
9  ((o)(o))
10 (o((o)))
11 ((((o))))
12 (oo(o))
13 ((o(o)))
15 ((o)((o)))
16 (oooo)
17 (((oo)))
18 (o(o)(o))
19 ((ooo))
20 (oo((o)))
22 (o(((o))))
23 (((o)(o)))
24 (ooo(o))
25 (((o))((o)))
27 ((o)(o)(o))
29 ((o((o))))
30 (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    nn=2000;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    leafcount[n_]:=If[n===1,1,With[{m=primeMS[n]},If[Length[m]===1,leafcount[First[m]],Total[leafcount/@m]]]];
    Select[Range[nn],SameQ@@leafcount/@primeMS[#]&]

A318187 Number of totally transitive rooted trees with n leaves.

Original entry on oeis.org

2, 2, 4, 8, 16, 32, 62, 122, 234, 451, 857, 1630, 3068, 5772, 10778, 20093, 37259
Offset: 1

Views

Author

Gus Wiseman, Aug 20 2018

Keywords

Comments

A rooted tree is totally transitive if every branch of the root is totally transitive and every branch of a branch of the root is also a branch of the root.

Examples

			The a(5) = 16 totally transitive rooted trees with 5 leaves:
  (o(o)(o(o)(o)))
  (o(o)(o)(o(o)))
  (o(o)(o)(o)(o))
  (o(o)(oo(o)))
  (oo(o)(o(o)))
  (o(o)(o)(oo))
  (oo(o)(o)(o))
  (o(o)(ooo))
  (o(oo)(oo))
  (oo(o)(oo))
  (ooo(o)(o))
  (o(oooo))
  (oo(ooo))
  (ooo(oo))
  (oooo(o))
  (ooooo)
		

Crossrefs

Programs

  • Mathematica
    totralv[n_]:=totralv[n]=If[n==1,{{},{{}}},Join@@Table[Select[Union[Sort/@Tuples[totralv/@c]],Complement[Union@@#,#]=={}&],{c,Select[IntegerPartitions[n],Length[#]>1&]}]];
    Table[Length[totralv[n]],{n,8}]

A324854 Lexicographically earliest sequence containing 1 and all positive integers > 2 whose prime indices already belong to the sequence.

Original entry on oeis.org

1, 4, 7, 8, 14, 16, 17, 19, 28, 32, 34, 38, 43, 49, 53, 56, 59, 64, 67, 68, 76, 86, 98, 106, 107, 112, 118, 119, 128, 131, 133, 134, 136, 139, 152, 163, 172, 191, 196, 212, 214, 224, 227, 236, 238, 241, 256, 262, 263, 266, 268, 272, 277, 278, 289, 301, 304
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiplicative semigroup: if x and y are in the sequence then so is x*y. - Robert Israel, Mar 19 2019

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   4: {1,1}
   7: {4}
   8: {1,1,1}
  14: {1,4}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  28: {1,1,4}
  32: {1,1,1,1,1}
  34: {1,7}
  38: {1,8}
  43: {14}
  49: {4,4}
  53: {16}
  56: {1,1,1,4}
  59: {17}
  64: {1,1,1,1,1,1}
  67: {19}
  68: {1,1,7}
		

Crossrefs

Programs

  • Maple
    S:= {1}:
    for n from 3 to 400 do
      if map(numtheory:-pi, numtheory:-factorset(n)) subset S then
        S:= S union {n}
      fi
    od:
    sort(convert(S,list)); # Robert Israel, Mar 19 2019
  • Mathematica
    aQ[n_]:=Switch[n,1,True,2,False,,And@@Cases[FactorInteger[n],{p,k_}:>aQ[PrimePi[p]]]];
    Select[Range[100],aQ]

A358454 Number of weakly transitive ordered rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 3, 6, 13, 33, 80, 201, 509, 1330, 3432, 8982, 23559, 62189
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2022

Keywords

Comments

We define an unlabeled ordered rooted tree to be weakly transitive if every branch of a branch of the root is itself a branch of the root.

Examples

			The a(1) = 1 through a(6) = 13 trees:
  o  (o)  (oo)  (ooo)   (oooo)   (ooooo)
                ((o)o)  ((o)oo)  ((o)ooo)
                (o(o))  ((oo)o)  ((oo)oo)
                        (o(o)o)  ((ooo)o)
                        (o(oo))  (o(o)oo)
                        (oo(o))  (o(oo)o)
                                 (o(ooo))
                                 (oo(o)o)
                                 (oo(oo))
                                 (ooo(o))
                                 ((o)(o)o)
                                 ((o)o(o))
                                 (o(o)(o))
		

Crossrefs

The unordered version is A290689, ranked by A290822.
The directed version is A358453.
A000081 counts rooted trees.
A306844 counts anti-transitive rooted trees.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Complement[Union@@#,#]=={}&]],{n,10}]

A324752 Number of strict integer partitions of n not containing 1 or any prime indices of the parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 3, 1, 4, 4, 4, 5, 6, 7, 10, 9, 12, 12, 16, 17, 22, 22, 26, 31, 35, 37, 46, 50, 55, 66, 70, 82, 90, 101, 114, 127, 143, 159, 172, 202, 215, 246, 267, 301, 327, 366, 402, 447, 491, 545, 600, 655, 722, 795, 875, 964, 1050, 1152, 1259, 1383
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(2) = 1 through a(17) = 12 strict integer partitions (A...H = 10...17):
  2  3  4  5  6   7   8  9   A   B    C   D    E    F    G    H
              42  43     54  64  65   75  76   86   87   97   98
                  52     63  73  83   84  85   95   96   A6   A7
                         72  82  542  93  94   A4   A5   C4   B6
                                      A2  B2   B3   B4   D3   C5
                                          643  752  C3   E2   D4
                                               842  D2   763  E3
                                                    654  943  854
                                                    843  A42  863
                                                    852       872
                                                              A52
                                                              B42
An example for n = 60 is (19,14,13,7,5,2), with prime indices:
  19: {8}
  14: {1,4}
  13: {6}
   7: {4}
   5: {3}
   2: {1}
None of these prime indices {1,3,4,6,8} belong to the partition, as required.
		

Crossrefs

The subset version is A324742, with maximal case is A324763. The non-strict version is A324757. The Heinz number version is A324761. An infinite version is A304360.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}]

A324757 Number of integer partitions of n not containing 1 or any prime indices of the parts.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 4, 3, 4, 6, 9, 7, 14, 12, 19, 21, 28, 29, 41, 45, 56, 64, 81, 89, 114, 125, 154, 176, 211, 236, 288, 324, 383, 432, 514, 578, 678, 766, 891, 1006, 1176, 1306, 1525, 1711, 1966, 2212, 2538, 2839, 3258, 3646, 4150, 4647, 5288, 5891, 6698, 7472
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(2) = 1 through a(10) = 9 integer partitions:
  (2)  (3)  (4)   (5)  (6)    (7)   (8)     (9)    (A)
            (22)       (33)   (43)  (44)    (54)   (55)
                       (42)   (52)  (422)   (63)   (64)
                       (222)        (2222)  (72)   (73)
                                            (333)  (82)
                                            (522)  (433)
                                                   (442)
                                                   (4222)
                                                   (22222)
		

Crossrefs

The subset version is A324742, with maximal case A324763. The strict case is A324752. The Heinz number version is A324761. An infinite version is A324695.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}]

A324761 Heinz numbers of integer partitions not containing 1 or any prime indices of the parts.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 65, 67, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 113, 115, 121, 123, 125, 127, 129, 131, 133, 137, 139, 143, 147, 149
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  33: {2,5}
  35: {3,4}
  37: {12}
  41: {13}
  43: {14}
		

Crossrefs

The subset version is A324742, with maximal case A324763. The strict integer partition version is A324752. The integer partition version is A324757. An infinite version is A324695.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1,100,2],Intersection[primeMS[#],Union@@primeMS/@primeMS[#]]=={}&]

A324845 Matula-Goebel numbers of rooted trees where the branches of no non-leaf branch of any terminal subtree form a submultiset of the branches of the same subtree.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 27, 29, 31, 32, 33, 34, 35, 38, 40, 43, 44, 46, 49, 50, 51, 53, 57, 58, 59, 62, 63, 64, 67, 68, 69, 70, 71, 73, 76, 77, 79, 80, 81, 83, 85, 86, 87, 88, 92, 93, 95, 97, 98, 99, 100, 103, 106
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Examples

			The sequence of terms together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  10: (o((o)))
  11: ((((o))))
  14: (o(oo))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  20: (oo((o)))
  21: ((o)(oo))
  22: (o(((o))))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    qaQ[n_]:=And[And@@Table[!Divisible[n,x],{x,DeleteCases[primeMS[n],1]}],And@@qaQ/@primeMS[n]];
    Select[Range[100],qaQ]

A325757 Irregular triangle read by rows giving the frequency span of n.

Original entry on oeis.org

1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 3, 2, 2, 2, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 2, 2, 2, 6, 1, 1, 1, 2, 4, 1, 1, 2, 2, 3, 1, 1, 1, 1, 4, 7, 1, 1, 1, 1, 2, 2, 2, 2, 8, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 2, 2, 4, 1, 1, 1, 2, 5, 9, 1, 1, 1, 1, 1, 1, 2, 2, 3
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

We define the frequency span of an integer partition to be the partition itself if it has no or only one block, and otherwise it is the multiset union of the partition and the frequency span of its multiplicities. For example, the frequency span of (3,2,2,1) is {1,2,2,3} U {1,1,2} U {1,2} U {1,1} U {2} = {1,1,1,1,1,1,2,2,2,2,2,3}. The frequency span of a positive integer is the frequency span of its prime indices (row n of A296150).

Examples

			Triangle begins:
   1:
   2: 1
   3: 2
   4: 1 1 2
   5: 3
   6: 1 1 1 2 2
   7: 4
   8: 1 1 1 3
   9: 2 2 2
  10: 1 1 1 2 3
  11: 5
  12: 1 1 1 1 1 2 2 2
  13: 6
  14: 1 1 1 2 4
  15: 1 1 2 2 3
  16: 1 1 1 1 4
  17: 7
  18: 1 1 1 1 2 2 2 2
  19: 8
  20: 1 1 1 1 1 2 2 3
  21: 1 1 2 2 4
  22: 1 1 1 2 5
  23: 9
  24: 1 1 1 1 1 1 2 2 3
  25: 2 3 3
  26: 1 1 1 2 6
  27: 2 2 2 3
  28: 1 1 1 1 1 2 2 4
		

Crossrefs

Row lengths are A325249.
Run-lengths are A325758.
Number of distinct terms in row n is A325759(n).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    freqspan[ptn_]:=If[Length[ptn]<=1,ptn,Sort[Join[ptn,freqspan[Sort[Length/@Split[ptn]]]]]];
    Table[freqspan[primeMS[n]],{n,15}]
Previous Showing 41-50 of 57 results. Next