cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A320055 Heinz numbers of sum-product knapsack partitions.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 107, 109, 111, 113, 115, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141, 143
Offset: 1

Views

Author

Gus Wiseman, Oct 04 2018

Keywords

Comments

A sum-product knapsack partition is a finite multiset m of positive integers such that every sum of products of parts of any multiset partition of any submultiset of m is distinct.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Differs from A320056 in having 2, 845, ... and lacking 245, 455, 847, ....

Examples

			A complete list of sums of products of multiset partitions of submultisets of the partition (6,6,3) is:
            0 = 0
          (3) = 3
          (6) = 6
        (3*6) = 18
        (6*6) = 36
      (3*6*6) = 108
      (3)+(6) = 9
    (3)+(6*6) = 39
      (6)+(6) = 12
    (6)+(3*6) = 24
  (3)+(6)+(6) = 15
These are all distinct, and the Heinz number of (6,6,3) is 845, so 845 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    multWt[n_]:=If[n==1,1,Times@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]^k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],UnsameQ@@Table[Plus@@multWt/@f,{f,Join@@facs/@Divisors[#]}]&]

A320056 Heinz numbers of product-sum knapsack partitions.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 107, 109, 111, 113, 115, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141, 143
Offset: 1

Views

Author

Gus Wiseman, Oct 04 2018

Keywords

Comments

A product-sum knapsack partition is a finite multiset m of positive integers such that every product of sums of parts of a multiset partition of any submultiset of m is distinct.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Differs from A320055 in having 245, 455, 847, ... and lacking 2, 845, ....

Examples

			A complete list of products of sums of multiset partitions of submultisets of the partition (5,5,4) is:
           () = 1
          (4) = 4
          (5) = 5
        (4+5) = 9
        (5+5) = 10
      (4+5+5) = 14
      (4)*(5) = 20
    (4)*(5+5) = 40
      (5)*(5) = 25
    (5)*(4+5) = 45
  (4)*(5)*(5) = 100
These are all distinct, and the Heinz number of (5,5,4) is 847, so 847 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    heinzWt[n_]:=If[n==1,0,Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],UnsameQ@@Table[Times@@heinzWt/@f,{f,Join@@facs/@Divisors[#]}]&]

A320052 Number of product-sum knapsack partitions of n. Number of integer partitions y of n such that every product of sums of the parts of a multiset partition of any submultiset of y is distinct.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 4, 4, 6, 8, 8
Offset: 0

Views

Author

Gus Wiseman, Oct 04 2018

Keywords

Examples

			The sequence of product-sum knapsack partitions begins:
   0: ()
   1:
   2: (2)
   3: (3)
   4: (4)
   5: (5) (3,2)
   6: (6) (4,2) (3,3)
   7: (7) (5,2) (4,3)
   8: (8) (6,2) (5,3) (4,4)
   9: (9) (7,2) (6,3) (5,4)
  10: (10) (8,2) (7,3) (6,4) (5,5) (4,3,3)
  11: (11) (9,2) (8,3) (7,4) (6,5) (5,4,2) (5,3,3) (4,4,3)
  12: (12) (10,2) (9,3) (8,4) (7,5) (7,3,2) (6,6) (4,4,4)
A complete list of all products of sums of multiset partitions of submultisets of (4,3,3) is:
           () = 1
          (3) = 3
          (4) = 4
        (3+3) = 6
        (3+4) = 7
      (3+3+4) = 10
      (3)*(3) = 9
      (3)*(4) = 12
    (3)*(3+4) = 21
    (4)*(3+3) = 24
  (3)*(3)*(4) = 36
These are all distinct, so (4,3,3) is a product-sum knapsack partition of 10.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};
    sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    rrsuks[n_]:=Select[IntegerPartitions[n],Function[q,UnsameQ@@Apply[Times,Apply[Plus,Union@@mps/@Union[Subsets[q]],{2}],{1}]]];
    Table[Length[rrsuks[n]],{n,12}]

A320053 Number of spanning sum-product knapsack partitions of n. Number of integer partitions y of n such that every sum of products of the parts of a multiset partition of y is distinct.

Original entry on oeis.org

1, 1, 2, 3, 2, 3, 4, 5, 6, 8, 9, 12, 14
Offset: 0

Views

Author

Gus Wiseman, Oct 04 2018

Keywords

Examples

			The sequence of spanning sum-product knapsack partitions begins:
  0: ()
  1: (1)
  2: (2) (1,1)
  3: (3) (2,1) (1,1,1)
  4: (4) (3,1)
  5: (5) (4,1) (3,2)
  6: (6) (5,1) (4,2) (3,3)
  7: (7) (6,1) (5,2) (4,3) (3,3,1)
  8: (8) (7,1) (6,2) (5,3) (4,4) (3,3,2)
  9: (9) (8,1) (7,2) (6,3) (5,4) (4,4,1) (4,3,2) (3,3,3)
A complete list of all sums of products covering the parts of (3,3,3,2) is:
        (2*3*3*3) = 54
      (2)+(3*3*3) = 29
      (3)+(2*3*3) = 21
      (2*3)+(3*3) = 15
    (2)+(3)+(3*3) = 14
    (3)+(3)+(2*3) = 12
  (2)+(3)+(3)+(3) = 11
These are all distinct, so (3,3,3,2) is a spanning sum-product knapsack partition of 11.
An example of a spanning sum-product knapsack partition that is not a spanning product-sum knapsack partition is (5,4,3,2).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};
    sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    rtuks[n_]:=Select[IntegerPartitions[n],Function[q,UnsameQ@@Apply[Plus,Apply[Times,mps[q],{2}],{1}]]];
    Table[Length[rtuks[n]],{n,8}]

A320054 Number of spanning product-sum knapsack partitions of n. Number of integer partitions y of n such that every product of sums the parts of a multiset partition of y is distinct.

Original entry on oeis.org

1, 1, 2, 3, 2, 4, 5, 8, 10, 12, 16, 17, 25
Offset: 0

Views

Author

Gus Wiseman, Oct 04 2018

Keywords

Examples

			The sequence of spanning product-sum knapsack partitions begins
0: ()
1: (1)
2: (2) (1,1)
3: (3) (2,1) (1,1,1)
4: (4) (3,1)
5: (5) (4,1) (3,2) (3,1,1)
6: (6) (5,1) (4,2) (4,1,1) (3,3)
7: (7) (6,1) (5,2) (5,1,1) (4,3) (4,2,1) (4,1,1,1) (3,3,1)
8: (8) (7,1) (6,2) (6,1,1) (5,3) (5,2,1) (5,1,1,1) (4,4) (4,3,1) (3,3,2)
9: (9) (8,1) (7,2) (7,1,1) (6,3) (6,2,1) (6,1,1,1) (5,4) (5,3,1) (4,4,1) (4,3,2) (3,3,3)
A complete list of all products of sums covering the parts of (4,1,1,1) is:
        (1+1+1+4) = 7
      (1)*(1+1+4) = 6
      (4)*(1+1+1) = 12
      (1+1)*(1+4) = 10
    (1)*(1)*(1+4) = 5
    (1)*(4)*(1+1) = 8
  (1)*(1)*(1)*(4) = 4
These are all distinct, so (4,1,1,1) is a spanning product-sum knapsack partition of 7.
A complete list of all products of sums covering the parts of (5,3,1,1) is:
        (1+1+3+5) = 10
      (1)*(1+3+5) = 9
      (3)*(1+1+5) = 21
      (5)*(1+1+3) = 25
      (1+1)*(3+5) = 16
      (1+3)*(1+5) = 24
    (1)*(1)*(3+5) = 8
    (1)*(3)*(1+5) = 18
    (1)*(5)*(1+3) = 20
    (3)*(5)*(1+1) = 30
  (1)*(1)*(3)*(5) = 15
These are all distinct, so (5,3,1,1) is a spanning product-sum knapsack partition of 10.
An example of a spanning sum-product knapsack partition that is not a spanning product-sum knapsack partition is (5,4,3,2).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};
    sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    rsuks[n_]:=Select[IntegerPartitions[n],Function[q,UnsameQ@@Apply[Times,Apply[Plus,mps[q],{2}],{1}]]];
    Table[Length[rsuks[n]],{n,10}]

A320057 Heinz numbers of spanning sum-product knapsack partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 75, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98, 101, 103, 105
Offset: 1

Views

Author

Gus Wiseman, Oct 04 2018

Keywords

Comments

A spanning sum-product knapsack partition is a finite multiset m of positive integers such that every sum of products of parts of any multiset partition of m is distinct.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Differs from A320058 in having 1155, 1625, 1815, 1875, 1911, ... and lacking 20, 28, 42, 44, 52, ...

Examples

			The sequence of all spanning sum-product knapsack partitions begins: (), (1), (2), (1,1), (3), (2,1), (4), (1,1,1), (3,1), (5), (6), (4,1), (3,2), (7), (8), (4,2), (5,1), (9), (3,3), (6,1).
A complete list of sums of products of multiset partitions of the partition (5,4,3,2) is:
        (2*3*4*5) = 120
      (2)+(3*4*5) = 62
      (3)+(2*4*5) = 43
      (4)+(2*3*5) = 34
      (5)+(2*3*4) = 29
      (2*3)+(4*5) = 26
      (2*4)+(3*5) = 23
      (2*5)+(3*4) = 22
    (2)+(3)+(4*5) = 25
    (2)+(4)+(3*5) = 21
    (2)+(5)+(3*4) = 19
    (3)+(4)+(2*5) = 17
    (3)+(5)+(2*4) = 16
    (4)+(5)+(2*3) = 15
  (2)+(3)+(4)+(5) = 14
These are all distinct, and the Heinz number of (5,4,3,2) is 1155, so 1155 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    multWt[n_]:=If[n==1,1,Times@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]^k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],UnsameQ@@Table[Plus@@multWt/@f,{f,facs[#]}]&]

A320058 Heinz numbers of spanning product-sum knapsack partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 85, 86, 87
Offset: 1

Views

Author

Gus Wiseman, Oct 04 2018

Keywords

Comments

A spanning product-sum knapsack partition is a finite multiset m of positive integers such that every product of sums of parts of any multiset partition of m is distinct.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Differs from A320057 in having 20, 28, 42, 44, 52, ... and lacking 1155, 1625, 1815, 1875, 1911, ....

Examples

			The sequence of all spanning product-sum knapsack partitions begins: (), (1), (2), (1,1), (3), (2,1), (4), (1,1,1), (3,1), (5), (6), (4,1), (3,2), (7), (8), (3,1,1), (4,2), (5,1), (9), (3,3), (6,1), (4,1,1).
A complete list of products of sums of multiset partitions of the partition (3,1,1) is:
      (1+1+3) = 5
    (1)*(1+3) = 4
    (3)*(1+1) = 6
  (1)*(1)*(3) = 3
These are all distinct, and the Heinz number of (3,1,1) is 20, so 20 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    heinzWt[n_]:=If[n==1,0,Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],UnsameQ@@Table[Times@@heinzWt/@f,{f,facs[#]}]&]

A347708 Number of distinct possible alternating products of odd-length factorizations of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 1, 2, 1, 4, 2, 1, 1, 5, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 5, 1, 2, 2, 3, 1, 2, 1, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 11 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
Note that it is sufficient to look at only length-1 and length-3 factorizations; cf. A347709.

Examples

			Representative factorizations for each of the a(180) = 7 alternating products:
  (2*2*3*3*5) -> 5
     (2*2*45) -> 45
     (2*3*30) -> 20
     (2*5*18) -> 36/5
     (2*9*10) -> 20/9
     (3*4*15) -> 45/4
        (180) -> 180
		

Crossrefs

The version for partitions is A028310, reverse A347707.
Positions of 1's appear to be A037143 \ {1}.
The even-length version for n > 1 is A072670, strict A211159.
Counting only integers appears to give A293234, with evens A046951.
This is the odd-length case of A347460, reverse A038548.
The any-length version for partitions is A347461, reverse A347462.
The length-3 case is A347709.
A001055 counts factorizations (strict A045778, ordered A074206).
A056239 adds up prime indices, row sums of A112798.
A276024 counts distinct positive subset-sums of partitions.
A292886 counts knapsack factorizations, by sum A293627.
A301957 counts distinct subset-products of prime indices.
A304792 counts distinct subset-sums of partitions.
A347050 = factorizations w/ an alternating permutation, complement A347706.
A347441 counts odd-length factorizations with integer alternating product.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[altprod/@Select[facs[n],OddQ[Length[#]]&]]],{n,100}]
  • PARI
    altprod(facs) = prod(i=1,#facs,facs[i]^((-1)^(i-1)));
    A347708aux(n, m=n, facs=List([])) = if(1==n, if((#facs)%2, altprod(facs), 0), my(newfacs, r, rats=List([])); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); r = A347708aux(n/d, d, newfacs); if(r, rats = concat(rats,r)))); (rats));
    A347708(n) = if(1==n,0,#Set(A347708aux(n))); \\ Antti Karttunen, Jan 29 2025

Formula

Conjecture: For n > 1, a(n) = 1 + A347460(n) - A038548(n) + A072670(n).

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 29 2025

A325993 Heinz numbers of integer partitions such that not every orderless pair of distinct parts has a different product.

Original entry on oeis.org

390, 780, 798, 1170, 1365, 1560, 1596, 1914, 1950, 2340, 2394, 2590, 2730, 2886, 3120, 3192, 3510, 3828, 3900, 3990, 4095, 4290, 4386, 4485, 4680, 4788, 5070, 5170, 5180, 5460, 5586, 5742, 5772, 5850, 6042, 6240, 6384, 6630, 6699, 6825, 7020, 7182, 7410, 7656
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   390: {1,2,3,6}
   780: {1,1,2,3,6}
   798: {1,2,4,8}
  1170: {1,2,2,3,6}
  1365: {2,3,4,6}
  1560: {1,1,1,2,3,6}
  1596: {1,1,2,4,8}
  1914: {1,2,5,10}
  1950: {1,2,3,3,6}
  2340: {1,1,2,2,3,6}
  2394: {1,2,2,4,8}
  2590: {1,3,4,12}
  2730: {1,2,3,4,6}
  2886: {1,2,6,12}
  3120: {1,1,1,1,2,3,6}
  3192: {1,1,1,2,4,8}
  3510: {1,2,2,2,3,6}
  3828: {1,1,2,5,10}
  3900: {1,1,2,3,3,6}
  3990: {1,2,3,4,8}
		

Crossrefs

The subset case is A196724.
The maximal case is A325859.
The integer partition case is A325856.
The strict integer partition case is A325855.
Heinz numbers of the counterexamples are given by A325993.

Programs

  • Mathematica
    Select[Range[1000],!UnsameQ@@Times@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&]

A296133 Number of twice-factorizations of n of type (Q,R,Q).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 7, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 6, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 2, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Examples

			The a(36) = 7 twice-factorizations are (2*3)*(6), (6)*(2*3), (2*3*6), (2*18), (3*12), (4*9), (36).
		

Crossrefs

Programs

  • Mathematica
    sfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sfs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Join@@Function[fac,Select[Join@@Permutations/@sps[fac],SameQ@@Times@@@#&]]/@sfs[n]],{n,100}]
Previous Showing 11-20 of 31 results. Next