A330463
Triangle read by rows where T(n,k) is the number of k-element sets of nonempty multisets of positive integers with total sum n.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 0, 3, 2, 0, 0, 5, 4, 0, 0, 0, 7, 11, 1, 0, 0, 0, 11, 20, 6, 0, 0, 0, 0, 15, 40, 16, 0, 0, 0, 0, 0, 22, 68, 40, 3, 0, 0, 0, 0, 0, 30, 120, 91, 11, 0, 0, 0, 0, 0, 0, 42, 195, 186, 41, 0, 0, 0, 0, 0, 0, 0, 56, 320, 367, 105, 3, 0, 0, 0, 0, 0, 0
Offset: 0
Triangle begins:
1
0 1
0 2 0
0 3 2 0
0 5 4 0 0
0 7 11 1 0 0
0 11 20 6 0 0 0
0 15 40 16 0 0 0 0
0 22 68 40 3 0 0 0 0
...
Row n = 5 counts the following sets of multisets:
{{5}} {{1},{4}} {{1},{2},{1,1}}
{{1,4}} {{2},{3}}
{{2,3}} {{1},{1,3}}
{{1,1,3}} {{1},{2,2}}
{{1,2,2}} {{2},{1,2}}
{{1,1,1,2}} {{3},{1,1}}
{{1,1,1,1,1}} {{1},{1,1,2}}
{{1,1},{1,2}}
{{2},{1,1,1}}
{{1},{1,1,1,1}}
{{1,1},{1,1,1}}
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(
combinat[numbpart](i), j)*expand(b(n-i*j, i-1)*x^j), j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
seq(T(n), n=0..14); # Alois P. Heinz, Dec 30 2019
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,2],And[UnsameQ@@#,Length[#]==k]&]],{n,0,10},{k,0,n}]
(* Second program: *)
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[
PartitionsP[i], j]*Expand[b[n - i*j, i - 1]*x^j], {j, 0, n/i}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]];
T /@ Range[0, 14] // Flatten (* Jean-François Alcover, May 18 2021, after Alois P. Heinz *)
-
A(n)={my(v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^numbpart(k)))); vector(#v, n, Vecrev(v[n],n))}
{my(T=A(12)); for(n=1, #T, print(T[n]))} \\ Andrew Howroyd, Dec 29 2019
A336343
Number of ways to choose a strict partition of each part of a strict composition of n.
Original entry on oeis.org
1, 1, 1, 4, 6, 11, 26, 39, 78, 142, 320, 488, 913, 1558, 2798, 5865, 9482, 16742, 28474, 50814, 82800, 172540, 266093, 472432, 790824, 1361460, 2251665, 3844412, 7205416, 11370048, 19483502, 32416924, 54367066, 88708832, 149179800, 239738369, 445689392
Offset: 0
The a(1) = 1 through a(5) = 11 ways:
(1) (2) (3) (4) (5)
(2,1) (3,1) (3,2)
(1),(2) (1),(3) (4,1)
(2),(1) (3),(1) (1),(4)
(1),(2,1) (2),(3)
(2,1),(1) (3),(2)
(4),(1)
(1),(3,1)
(2,1),(2)
(2),(2,1)
(3,1),(1)
Multiset partitions of partitions are
A001970.
Splittings of strict partitions are
A072706.
Set partitions of strict partitions are
A294617.
Splittings of partitions with distinct sums are
A336131.
Cf.
A008289,
A011782,
A304786,
A318683,
A318684,
A319794,
A323583,
A336128,
A336130,
A336132,
A336133.
Partitions:
- Partitions of each part of a partition are
A063834.
- Compositions of each part of a partition are
A075900.
- Strict partitions of each part of a partition are
A270995.
- Strict compositions of each part of a partition are
A336141.
Strict partitions:
- Partitions of each part of a strict partition are
A271619.
- Compositions of each part of a strict partition are
A304961.
- Strict partitions of each part of a strict partition are
A279785.
- Strict compositions of each part of a strict partition are
A336142.
Compositions:
- Partitions of each part of a composition are
A055887.
- Compositions of each part of a composition are
A133494.
- Strict partitions of each part of a composition are
A304969.
- Strict compositions of each part of a composition are
A307068.
Strict compositions:
- Partitions of each part of a strict composition are
A336342.
- Compositions of each part of a strict composition are
A336127.
- Strict partitions of each part of a strict composition are
A336343.
- Strict compositions of each part of a strict composition are
A336139.
-
strptn[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
Table[Length[Join@@Table[Tuples[strptn/@ctn],{ctn,Join@@Permutations/@strptn[n]}]],{n,0,10}]
-
\\ here Q(N) gives A000009 as a vector.
Q(n) = {Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)))}
seq(n)={my(b=Q(n)); [subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, 1 + y*x^k*b[1+k] + O(x*x^n)))]} \\ Andrew Howroyd, Apr 16 2021
A330461
Array read by antidiagonals where A(n,k) is the number of multiset partitions with k levels that are strict at all levels and have total sum n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 4, 4, 1, 1, 1, 1, 4, 7, 7, 5, 1, 1, 1, 1, 5, 12, 14, 11, 6, 1, 1, 1, 1, 6, 19, 29, 25, 16, 7, 1, 1, 1, 1, 8, 30, 57, 60, 41, 22, 8, 1, 1, 1, 1, 10, 49, 110, 141, 111, 63, 29, 9, 1, 1, 1
Offset: 0
Array begins:
k=0 k=1 k=2 k=3 k=4 k=5 k=6
-----------------------------
n=0: 1 1 1 1 1 1 1
n=1: 1 1 1 1 1 1 1
n=2: 1 1 1 1 1 1 1
n=3: 1 2 3 4 5 6 7
n=4: 1 2 4 7 11 16 22
n=5: 1 3 7 14 25 41 63
n=6: 1 4 12 29 60 111 189
For example, the A(5,3) = 14 partitions are:
{{5}} {{1}}{{4}}
{{14}} {{2}}{{3}}
{{23}} {{1}}{{13}}
{{1}{4}} {{2}}{{12}}
{{2}{3}} {{1}}{{1}{3}}
{{1}{13}} {{2}}{{1}{2}}
{{2}{12}} {{1}}{{1}{12}}
Cf.
A001970,
A004111,
A007713,
A060016,
A273873,
A279375,
A279785,
A294617,
A306186,
A323718,
A323790,
A330462.
-
spl[n_,0]:={n};
spl[n_,k_]:=Select[Join@@Table[Union[Sort/@Tuples[spl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}],UnsameQ@@#&];
Table[Length[spl[n-k,k]],{n,0,10},{k,0,n}]
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
M(n, k=n)={my(L=List(), v=vector(n,i,1)); listput(L, concat([1], v)); for(j=1, k, v=WeighT(v); listput(L, concat([1], v))); Mat(Col(L))~}
{ my(A=M(7)); for(i=1, #A, print(A[i,])) } \\ Andrew Howroyd, Dec 31 2019
A294787
Number of ways to choose a set partition of a factorization of n into distinct factors greater than one.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 5, 1, 3, 3, 3, 1, 5, 1, 5, 3, 3, 1, 12, 1, 3, 3, 5, 1, 12, 1, 5, 3, 3, 3, 12, 1, 3, 3, 12, 1, 12, 1, 5, 5, 3, 1, 19, 1, 5, 3, 5, 1, 12, 3, 12, 3, 3, 1, 26, 1, 3, 5, 10, 3, 12, 1, 5, 3, 12, 1, 26, 1, 3, 5, 5, 3, 12, 1, 19, 3, 3
Offset: 1
-
strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
Table[Total[BellB/@Length/@strfacs[n]],{n,100}]
A330759
Number T(n,k) of set partitions into k blocks of strict integer partitions of n; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 3, 2, 0, 4, 5, 1, 0, 5, 6, 1, 0, 6, 9, 2, 0, 8, 13, 3, 0, 10, 23, 10, 1, 0, 12, 27, 11, 1, 0, 15, 40, 19, 2, 0, 18, 51, 26, 3, 0, 22, 71, 40, 5, 0, 27, 100, 73, 16, 1, 0, 32, 127, 93, 19, 1, 0, 38, 163, 132, 31, 2, 0, 46, 215, 184, 45, 3
Offset: 0
T(10,1) = 10: (10), 1234, 127, 136, 145, 19, 235, 28, 37, 46.
T(10,2) = 23: 123|4, 124|3, 12|34, 12|7, 134|2, 13|24, 13|6, 14|23, 14|5, 15|4, 16|3, 17|2, 1|234, 1|27, 1|36, 1|45, 1|9, 23|5, 25|3, 2|35, 2|8, 3|7, 4|6.
T(10,3) = 10: 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3, 1|2|34, 1|2|7, 1|3|6, 1|4|5, 2|3|5.
T(10,4) = 1: 1|2|3|4.
Triangle T(n,k) begins:
1;
0, 1;
0, 1;
0, 2, 1;
0, 2, 1;
0, 3, 2;
0, 4, 5, 1;
0, 5, 6, 1;
0, 6, 9, 2;
0, 8, 13, 3;
0, 10, 23, 10, 1;
0, 12, 27, 11, 1;
0, 15, 40, 19, 2;
0, 18, 51, 26, 3;
0, 22, 71, 40, 5;
0, 27, 100, 73, 16, 1;
...
-
b:= proc(n, i, k) option remember; `if`(i*(i+1)/2 b(n-i, t, k)*k
+b(n-i, t, k+1))(min(n-i, i-1))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
seq(T(n), n=0..20);
-
b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0,
If[n == 0, x^k, b[n, i-1, k] + With[{t = Min[n-i, i-1]},
b[n-i, t, k]*k + b[n-i, t, k+1]]]];
T[n_] := CoefficientList[b[n, n, 0], x];
T /@ Range[0, 20] // Flatten (* Jean-François Alcover, Mar 12 2021, after Alois P. Heinz *)
A320886
Number of multiset partitions of integer partitions of n where all parts have the same product.
Original entry on oeis.org
1, 1, 3, 5, 10, 14, 25, 33, 54, 73, 107, 140, 207, 264, 369, 479, 652, 828, 1112, 1400, 1848, 2326, 3009, 3762, 4856, 6020, 7648, 9478, 11942, 14705, 18427, 22576, 28083, 34350, 42429, 51714, 63680, 77289, 94618, 114648, 139773, 168799, 205144, 247128, 299310, 359958, 434443, 521255, 627812, 751665, 902862
Offset: 0
The a(1) = 1 through a(6) = 25 multiset partitions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(1)(1) (111) (22) (23) (24)
(1)(11) (112) (113) (33)
(1)(1)(1) (1111) (122) (114)
(2)(2) (1112) (123)
(1)(111) (11111) (222)
(11)(11) (2)(12) (1113)
(1)(1)(11) (1)(1111) (1122)
(1)(1)(1)(1) (11)(111) (3)(3)
(1)(1)(111) (11112)
(1)(11)(11) (111111)
(1)(1)(1)(11) (12)(12)
(1)(1)(1)(1)(1) (2)(112)
(2)(2)(2)
(1)(11111)
(11)(1111)
(111)(111)
(1)(1)(1111)
(1)(11)(111)
(11)(11)(11)
(1)(1)(1)(111)
(1)(1)(11)(11)
(1)(1)(1)(1)(11)
(1)(1)(1)(1)(1)(1)
Cf.
A001055,
A001970,
A045778,
A050336,
A279375,
A294617,
A294786,
A294787,
A294788,
A320887,
A320888,
A320889.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[Join@@mps/@IntegerPartitions[n],SameQ@@Times@@@#&]],{n,8}]
-
G(n)={my(M=Map()); for(k=1, n, forpart(p=k, my(t=vecprod(Vec(p)), z); mapput(M, t, if(mapisdefined(M, t, &z), z, 0) + x^k))); M}
a(n)=if(n==0, 1, vecsum(apply(p->EulerT(Vecrev(p/x, n))[n], Mat(G(n))[,2]))) \\ Andrew Howroyd, Oct 26 2018
A336140
Number of ways to choose a set partition of the parts of a strict integer composition of n.
Original entry on oeis.org
1, 1, 1, 5, 5, 9, 39, 43, 73, 107, 497, 531, 951, 1345, 2125, 8789, 9929, 16953, 24723, 38347, 52717, 219131, 240461, 419715, 600075, 938689, 1278409, 1928453, 6853853, 7815657, 13205247, 19051291, 29325121, 40353995, 60084905, 80722899, 277280079, 312239953
Offset: 0
Set partitions of binary indices are
A050315.
Set partitions of strict partitions are
A294617.
-
b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$2, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Jul 30 2020
-
Table[Sum[BellB[Length[ctn]],{ctn,Join@@Permutations/@Select[ IntegerPartitions[n],UnsameQ@@#&]}],{n,0,10}]
(* Second program: *)
b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0, If[n == 0,
BellB[p]*p!, b[n, i-1, p] + b[n-i, Min[n-i, i-1], p+1]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 40] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
A356957
Number of set partitions of strict integer partitions of n into intervals, where an interval is a set of positive integers with all differences of adjacent elements equal to 1.
Original entry on oeis.org
1, 1, 1, 3, 2, 4, 7, 7, 8, 13, 20, 19, 27, 30, 42, 60, 63, 75, 99, 112, 141, 191, 205, 248, 296, 357, 408, 513, 617, 696, 831, 969, 1117, 1337, 1523, 1797, 2171, 2420, 2805, 3265, 3772, 4289, 5013, 5661, 6579, 7679, 8615, 9807, 11335, 12799, 14581
Offset: 0
The a(1) = 1 through a(6) = 7 set partitions:
{{1}} {{2}} {{3}} {{4}} {{5}} {{6}}
{{1,2}} {{1},{3}} {{2,3}} {{1,2,3}}
{{1},{2}} {{1},{4}} {{1},{5}}
{{2},{3}} {{2},{4}}
{{1},{2,3}}
{{1,2},{3}}
{{1},{2},{3}}
For set partitions of {1..n} we have
A011782.
Not restricting to intervals gives
A294617.
A001970 counts multiset partitions of integer partitions.
A356941 counts multiset partitions of integer partitions w/ gapless blocks.
-
chQ[y_] := Length[y] <= 1 || Union[Differences[y]] == {1};
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[Join@@sps/@Reverse/@Select[IntegerPartitions[n], UnsameQ@@#&],And@@chQ/@#&]],{n,0,15}]
A376263
Number of strict integer compositions of n whose leaders of increasing runs are increasing.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 5, 6, 8, 11, 18, 21, 30, 38, 52, 77, 96, 126, 167, 217, 278, 402, 488, 647, 822, 1073, 1340, 1747, 2324, 2890, 3695, 4690, 5924, 7469, 9407, 11718, 15405, 18794, 23777, 29507, 37188, 45720, 57404, 70358, 87596, 110672, 135329, 167018, 206761, 254200, 311920
Offset: 0
The a(1) = 1 through a(9) = 11 compositions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
(2,3) (2,4) (2,5) (2,6) (2,7)
(1,2,3) (3,4) (3,5) (3,6)
(1,3,2) (1,2,4) (1,2,5) (4,5)
(1,4,2) (1,3,4) (1,2,6)
(1,4,3) (1,3,5)
(1,5,2) (1,5,3)
(1,6,2)
(2,3,4)
(2,4,3)
For less-greater or greater-less we have
A294617.
A374700 counts compositions by sum of leaders of strictly increasing runs.
Cf.
A000110,
A008289,
A056823,
A106356,
A188920,
A238343,
A261982,
A274174,
A333213,
A374634,
A374683,
A374698,
A374763.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@#&&Less@@First/@Split[#,Less]&]],{n,0,15}]
-
\\ here Q(n) gives n-th row of A008289.
Q(n)={Vecrev(polcoef(prod(k=1, n, 1 + y*x^k, 1 + O(x*x^n)), n)/y)}
a(n)={if(n==0, 1, my(r=Q(n), s=Vec(serlaplace(exp(exp(x+O(x^#r))- 1)))); sum(k=1, #r, r[k]*s[k]))} \\ Andrew Howroyd, Sep 18 2024
A374932
Number T(n,k) of partitions of [n] such that the maximal block element sum equals k; triangle T(n,k), n>=0, n <= k <= A000217(n), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 6, 6, 8, 9, 9, 5, 3, 3, 1, 1, 1, 12, 14, 20, 31, 26, 32, 19, 14, 11, 10, 5, 3, 3, 1, 1, 1, 26, 31, 59, 78, 111, 108, 113, 76, 67, 57, 39, 39, 21, 16, 12, 10, 5, 3, 3, 1, 1, 1, 57, 84, 140, 260, 321, 458, 427, 500, 326, 300, 284, 229, 182, 159, 107, 79, 64, 46, 41, 23, 17, 12, 10, 5, 3, 3, 1, 1, 1
Offset: 0
T(5,7) = 8: 124|3|5, 12|34|5, 13|25|4, 14|25|3, 15|2|34, 1|25|34, 1|2|34|5, 1|25|3|4.
T(6,6) = 12: 123|4|5|6, 12|3|4|5|6, 13|24|5|6, 13|2|4|5|6, 14|23|5|6, 15|23|4|6, 1|23|4|5|6, 14|2|3|5|6, 15|24|3|6, 1|24|3|5|6, 15|2|3|4|6, 1|2|3|4|5|6.
T(6,7) = 14: 124|3|5|6, 12|34|5|6, 13|25|4|6, 16|23|4|5, 14|25|3|6, 16|24|3|5, 15|2|34|6, 16|25|34, 1|25|34|6, 16|2|34|5, 1|2|34|5|6, 16|25|3|4, 1|25|3|4|6, 16|2|3|4|5.
Triangle T(n,k) begins:
1;
1;
1, 1;
2, 1, 1, 1;
3, 3, 3, 3, 1, 1, 1;
6, 6, 8, 9, 9, 5, 3, 3, 1, 1, 1;
12, 14, 20, 31, 26, 32, 19, 14, 11, 10, 5, 3, 3, 1, 1, 1;
...
Number of terms in row n is
A000124(n-1) for n>=1.
Comments