cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A119434 Odd n such that 2*phi(n) < n.

Original entry on oeis.org

105, 165, 195, 315, 495, 525, 585, 735, 825, 945, 975, 1155, 1365, 1485, 1575, 1755, 1785, 1815, 1995, 2145, 2205, 2415, 2475, 2535, 2625, 2805, 2835, 2925, 3003, 3045, 3135, 3255, 3315, 3465, 3675, 3705, 3795, 3885, 3927, 4095, 4125, 4305, 4389, 4455
Offset: 1

Views

Author

Keywords

Comments

Obviously 2*phi(n) = n is impossible for odd n. Odd elements of A054741 and A119432. This is not the same as A036798. 684411 = 3*7*13*23*109 is in this sequence but not in A036798. (This is may not be the smallest such value.) The primitive elements of this sequence are A119433, excluding the initial 2
If n is in the sequence, then so is every odd multiple of n. - Robert Israel, Jan 06 2017
The asymptotic density of this sequence is in the interval (0.01120, 0.01176) (Kobayashi, 2016). It is 1/2 less than the asymptotic density of A119432. The number of terms below 10^k for k = 3, 4, ... are 11, 109, 1152, 11076, 111927, 1124091, 11224403, 112074112, ... - Amiram Eldar, Oct 15 2020

Crossrefs

Programs

  • Maple
    select(t -> numtheory:-phi(t) < t/2, [seq(t,t=1..10000,2)]);
  • Mathematica
    Select[Range[1, 10^4, 2], 2 EulerPhi[#] < #&] (* Jean-François Alcover, Apr 12 2019 *)
  • PARI
    lista(nn) = forstep (n=1, nn, 2, if (n > 2*eulerphi(n), print1(n, ", "))) \\ Michel Marcus, Jul 04 2015

Formula

A036798 UNION A118700. - R. J. Mathar, Aug 08 2007
A119432 \ A299174. - Amiram Eldar, Oct 15 2020

A350803 Numbers k with at least one partition into two parts (s,t), s<=t such that t | s*k.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 35, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 86, 88, 90, 91, 92, 94, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 112, 114, 116
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 16 2022

Keywords

Comments

From Bernard Schott, Jan 22 2022: (Start)
A299174 is a subsequence because, if k = 2*u, we have s=t=u, s<=t, and u | u*k.
A082663 is another subsequence because, if k = p*q with p < q < 2p, then with s = k-p^2 = p*(q-p) and t = p^2, we have s <= t and p^2 | p*(q-p) * (pq).
It seems that A090196 is the subsequence of odd terms. (End)
gcd(s, t) > 1 where s and t and k > 2 are as in name. - David A. Corneth, Jan 22 2022
Numbers k such that k^2 has at least one divisor d with k/2 <= d < k. - Robert Israel, Jan 08 2025

Examples

			15 is in the sequence since 15 = 6+9 where 9 | 6*15 = 90.
		

Crossrefs

Cf. A338021, A350804 (exactly one).
Subsequences: A082663, A299174.
Cf. A090196.

Programs

  • Maple
    filter:= proc(n) nops(select(t -> t >= n/2 and t < n, numtheory:-divisors(n^2)))>=1 end proc:
    select(filter, [$1..300]); # Robert Israel, Jan 08 2025
  • PARI
    f(n) = sum(s=1, n\2, !((s*n)%(n-s))); \\ A338021
    isok(k) = f(k) >= 1; \\ Michel Marcus, Jan 17 2022

A320537 Square array read by antidiagonals in which T(n,k) is the n-th even number j with the property that the symmetric representation of sigma(j) has k parts.

Original entry on oeis.org

2, 4, 10, 6, 14, 50, 8, 22, 70, 230, 12, 26, 98, 250, 1150, 16, 34, 110, 290, 1250, 5050, 18, 38, 130, 310, 1450, 5150, 22310, 20, 44, 154, 370, 1550, 5290, 23230, 106030, 24, 46, 170, 406, 1850, 5350, 23690, 106490, 510050, 28, 52, 182, 410, 2030, 5450, 24610, 107410, 513130, 2065450
Offset: 1

Views

Author

Omar E. Pol, Oct 15 2018

Keywords

Comments

This is a permutation of the positive even numbers (A299174).
The union of all odd-indexed columns gives A319796, the even numbers in A071562.
The union of all even-indexed columns gives A319802, the even numbers in A071561.

Examples

			From _Hartmut F. W. Hoft_, Oct 06 2021: (Start)
The 10x10 section of table T(n,k):
(Table with first 20 terms from _Omar E. Pol_)
------------------------------------------------------------------
n\k | 1   2   3    4    5     6     7      8       9       10  ...
------------------------------------------------------------------
  1 | 2   10  50   230  1150  5050  22310  106030  510050  2065450
  2 | 4   14  70   250  1250  5150  23230  106490  513130  2115950
  3 | 6   22  98   290  1450  5290  23690  107410  520150  2126050
  4 | 8   26  110  310  1550  5350  24610  110170  530150  2157850
  5 | 12  34  130  370  1850  5450  25070  112010  530450  2164070
  6 | 16  38  154  406  2030  5650  25250  112930  532450  2168150
  7 | 18  44  170  410  2050  5750  25750  114770  534290  2176550
  8 | 20  46  182  430  2150  6250  25990  115690  537050  2186650
  9 | 24  52  190  434  2170  6350  26450  116150  540350  2216950
  10| 28  58  238  470  2350  6550  26750  117070  544870  2219650
   ... (End)
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 is defined in A341969 *)
    sArray[b_, pMax_] := Module[{list=Table[{}, pMax], i, p}, For[i=2, i<=b, i+=2, p=Length[Select[SplitBy[a341969[i], #!=0&], #[[1]]!=0&]]; If[p<=pMax&&Length[list[[p]]]Hartmut F. W. Hoft, Oct 06 2021 *)

Extensions

Terms a(21) and beyond from Hartmut F. W. Hoft, Oct 06 2021

A317108 Numbers missing from A317106.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128
Offset: 1

Views

Author

Daniël Karssen, Jul 24 2018

Keywords

Comments

Equal to A299174 for n<=2930; a(2931)=5861, A299174(2931)=5862.
A317106 is finite, so this sequence is infinite.
See A317106 for further information.

Crossrefs

A317440 Numbers missing from A317438.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128
Offset: 1

Views

Author

Daniël Karssen, Jul 28 2018

Keywords

Comments

Equal to A299174 for n<=11361; a(11362)=22723, A299174(11362)=22724.
A317438 is finite, so this sequence is infinite.
See A317438 for further information.

Crossrefs

A349767 Numbers m such that 2^m - m is divisible by 5.

Original entry on oeis.org

3, 14, 16, 17, 23, 34, 36, 37, 43, 54, 56, 57, 63, 74, 76, 77, 83, 94, 96, 97, 103, 114, 116, 117, 123, 134, 136, 137, 143, 154, 156, 157, 163, 174, 176, 177, 183, 194, 196, 197, 203, 214, 216, 217, 223, 234, 236, 237, 243, 254, 256, 257, 263, 274, 276, 277, 283, 294, 296, 297, 303
Offset: 1

Views

Author

Bernard Schott, Dec 10 2021

Keywords

Comments

For every prime p, there are infinitely many numbers m such that 2^m - m (A000325) is divisible by p, here are numbers m corresponding to p = 5.
Equivalently, numbers that are congruent to {3, 14, 16, 17, 23, 34, 36, 37, 43, 54, 56, 57} mod 60, <==> numbers that are congruent to {+-3, +-14, +-16, +-17, +-23, +-34} mod 60.

References

  • Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1983, page 158, 1993.

Crossrefs

Similar with: A299174 (p = 2), A047257 (p = 3), this sequence (p = 5).

Programs

  • Maple
    filter:= n -> 2^n-n mod 5 = 0 : select(filter, [$1..400]);
  • Mathematica
    Select[Range[300], PowerMod[2, #, 5] == Mod[#, 5] &] (* Amiram Eldar, Dec 10 2021 *)
  • PARI
    isok(m) = Mod(2, 5)^m == Mod(m, 5); \\ Michel Marcus, Dec 10 2021
    
  • Python
    def ok(n): return pow(2, n, 5) == n%5
    print([k for k in range(357) if ok(k)]) # Michael S. Branicky, Dec 10 2021

A321220 a(n) = n+2 if n is even, otherwise a(n) = 2*n+1 if n is odd.

Original entry on oeis.org

2, 3, 4, 7, 6, 11, 8, 15, 10, 19, 12, 23, 14, 27, 16, 31, 18, 35, 20, 39, 22, 43, 24, 47, 26, 51, 28, 55, 30, 59, 32, 63, 34, 67, 36, 71, 38, 75, 40, 79, 42, 83, 44, 87, 46, 91, 48, 95, 50, 99, 52, 103, 54, 107, 56, 111, 58, 115, 60, 119, 62, 123, 64, 127, 66
Offset: 0

Views

Author

Michel Marcus, Oct 31 2018

Keywords

Comments

For n >= 3, a(n) is the Harborth Constant for the Dihedral groups D2n. See Balachandra link, Theorem 1 p. 2.

Crossrefs

A299174 and A004767 interleaved.

Programs

  • Magma
    [IsOdd(n) select (2*n+1) else n+2: n in [0..80]]; // Vincenzo Librandi, Nov 01 2018
  • Maple
    a:=n->`if`(modp(n,2)=0,n+2,2*n+1): seq(a(n),n=0..70); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    CoefficientList[Series[(2 + 3 x + x^3)/(1 - x^2)^2, {x, 0, 64}], x] (* Michael De Vlieger, Oct 31 2018 *)
    Table[If[OddQ[n], (2 n + 1), n + 2], {n, 0, 80}] (* Vincenzo Librandi, Nov 01 2018 *)
  • PARI
    a(n) = if (n%2, 2*n+1, n+2);
    
  • PARI
    Vec((2 + 3*x + x^3) / ((1 - x)^2*(1 + x)^2) + O(x^80)) \\ Colin Barker, Oct 31 2018
    

Formula

a(n) = A043547(n+1) + 1.
From Colin Barker, Oct 31 2018: (Start)
G.f.: (2 + 3*x + x^3) / (1-x^2)^2.
a(n) = 2*a(n-2) - a(n-4) for n > 3.
(End)

A369395 AGM transform of the even positive numbers.

Original entry on oeis.org

0, 4, 432, 61696, 12300000, 3339123264, 1195810789376, 549031054934016, 315439869711260160, 222215334010000000000, 188664842745174745939968, 190234762349632291168321536, 224946256003775354246877765632, 308520390288000443379128425267200, 486093585063330330624000000000000000
Offset: 1

Views

Author

Hugo Pfoertner, Jan 24 2024

Keywords

Comments

See A368366 for the definition of the AGM transform.

Crossrefs

Programs

  • Mathematica
    A369395[n_] := n^n*((n+1)^n - (2*n)!!);
    Array[A369395, 15] (* Paolo Xausa, Jan 29 2024 *)
  • PARI
    a369395(n) = {my(v=vector(n,i,i+i)); vecsum(v)^n - n^n*vecprod(v)};
    
  • Python
    from math import factorial
    def A369395(n): return n**n*((n+1)**n-(factorial(n)<Chai Wah Wu, Jan 25 2024

A376108 Non-Leonardo numbers.

Original entry on oeis.org

2, 4, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74
Offset: 1

Views

Author

Chai Wah Wu, Sep 10 2024

Keywords

Comments

A299174 UNION A005408(A001690 - 1).

Crossrefs

Programs

  • Python
    def A376108(n):
        def f(x):
            a, b, c = 1, 1, n
            while True:
                if b > x: return c
                a, b = b, a+b+1
                c +=1
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m
Previous Showing 21-29 of 29 results.