cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 49 results. Next

A366749 Self-signed alternating sum of the prime indices of n.

Original entry on oeis.org

0, -1, 2, -2, -3, 1, 4, -3, 4, -4, -5, 0, 6, 3, -1, -4, -7, 3, 8, -5, 6, -6, -9, -1, -6, 5, 6, 2, 10, -2, -11, -5, -3, -8, 1, 2, 12, 7, 8, -6, -13, 5, 14, -7, 1, -10, -15, -2, 8, -7, -5, 4, 16, 5, -8, 1, 10, 9, -17, -3, 18, -12, 8, -6, 3, -4, -19, -9, -7, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2023

Keywords

Comments

We define the self-signed alternating sum of a multiset y to be Sum_{k in y} k*(-1)^k.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

With summands of 2^(n-1) we get A048675.
With summands of (-1)^k we get A195017.
The version for alternating prime indices is A346697 - A346698 = A316524.
Positions of zeros are A366748, counted by A239261.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A300061 lists numbers with even sum of prime indices, odd A300063.
A366528 adds up odd prime indices, counted by A113685.
A366531 adds up even prime indices, counted by A113686.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    asum[y_]:=Sum[x*(-1)^x,{x,y}];
    Table[asum[prix[n]],{n,100}]

Formula

a(n) = Sum_{k in A112798(n)} k*(-1)^k.
a(n) = A366531(n) - A366528(n).

A372586 Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is odd.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 12, 15, 16, 17, 20, 21, 29, 32, 36, 42, 43, 45, 46, 47, 48, 51, 53, 54, 55, 59, 60, 61, 63, 64, 65, 66, 67, 68, 71, 73, 78, 79, 80, 81, 84, 89, 91, 93, 94, 95, 97, 99, 101, 105, 110, 111, 113, 114, 115, 116, 118, 119, 121, 122, 125, 127
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The even version is A372587.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
            {1}   1  ()
            {2}   2  (1)
          {1,2}   3  (2)
            {3}   4  (1,1)
          {1,3}   5  (3)
            {4}   8  (1,1,1)
          {1,4}   9  (2,2)
          {3,4}  12  (2,1,1)
      {1,2,3,4}  15  (3,2)
            {5}  16  (1,1,1,1)
          {1,5}  17  (7)
          {3,5}  20  (3,1,1)
        {1,3,5}  21  (4,2)
      {1,3,4,5}  29  (10)
            {6}  32  (1,1,1,1,1)
          {3,6}  36  (2,2,1,1)
        {2,4,6}  42  (4,2,1)
      {1,2,4,6}  43  (14)
      {1,3,4,6}  45  (3,2,2)
      {2,3,4,6}  46  (9,1)
    {1,2,3,4,6}  47  (15)
          {5,6}  48  (2,1,1,1,1)
		

Crossrefs

Positions of odd terms in A372428, zeros A372427.
For minimum (A372437) we have A372439, complement A372440.
For length (A372441, zeros A071814) we have A372590, complement A372591.
For maximum (A372442, zeros A372436) we have A372588, complement A372589.
The complement is A372587.
For just binary indices:
- length: A000069, complement A001969
- sum: A158705, complement A158704
- minimum: A003159, complement A036554
- maximum: A053738, complement A053754
For just prime indices:
- length: A026424 (count A027193), complement A028260 (count A027187)
- sum: A300063 (count A058695), complement A300061 (count A058696)
- minimum: A340932 (count A026804), complement A340933 (count A026805)
- maximum: A244991 (count A027193), complement A244990 (count A027187)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],OddQ[Total[bix[#]]+Total[prix[#]]]&]

Formula

Numbers k such that A029931(k) + A056239(k) is odd.

A372589 Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is even.

Original entry on oeis.org

3, 4, 5, 9, 12, 13, 14, 16, 17, 20, 22, 23, 25, 30, 31, 35, 36, 37, 38, 39, 42, 43, 48, 49, 52, 53, 54, 56, 57, 58, 61, 63, 64, 66, 67, 68, 69, 73, 75, 77, 80, 82, 83, 85, 88, 90, 92, 93, 94, 97, 99, 100, 102, 103, 109, 110, 115, 118, 119, 120, 121, 123, 124
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The odd version is A372588.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
        {1,2}   3  (2)
          {3}   4  (1,1)
        {1,3}   5  (3)
        {1,4}   9  (2,2)
        {3,4}  12  (2,1,1)
      {1,3,4}  13  (6)
      {2,3,4}  14  (4,1)
          {5}  16  (1,1,1,1)
        {1,5}  17  (7)
        {3,5}  20  (3,1,1)
      {2,3,5}  22  (5,1)
    {1,2,3,5}  23  (9)
      {1,4,5}  25  (3,3)
    {2,3,4,5}  30  (3,2,1)
  {1,2,3,4,5}  31  (11)
      {1,2,6}  35  (4,3)
        {3,6}  36  (2,2,1,1)
      {1,3,6}  37  (12)
      {2,3,6}  38  (8,1)
    {1,2,3,6}  39  (6,2)
      {2,4,6}  42  (4,2,1)
    {1,2,4,6}  43  (14)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372587, complement A372586.
For minimum (A372437) we have A372440, complement A372439.
For length (A372441, zeros A071814) we have A372591, complement A372590.
Positions of even terms in A372442, zeros A372436.
The complement is A372588.
For just binary indices:
- length: A001969, complement A000069
- sum: A158704, complement A158705
- minimum: A036554, complement A003159
- maximum: A053754, complement A053738
For just prime indices:
- length: A026424 A028260 (count A027187), complement (count A027193)
- sum: A300061 (count A058696), complement A300063 (count A058695)
- minimum: A340933 (count A026805), complement A340932 (count A026804)
- maximum: A244990 (count A027187), complement A244991 (count A027193)
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031215 lists even-indexed primes, odd A031368.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[2,100],EvenQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]

Formula

Numbers k such that A070939(k) + A061395(k) is even.

A372590 Numbers whose binary weight (A000120) plus bigomega (A001222) is odd.

Original entry on oeis.org

1, 3, 4, 5, 12, 14, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 29, 30, 35, 38, 43, 45, 48, 49, 53, 55, 56, 62, 63, 64, 66, 68, 69, 71, 72, 74, 75, 78, 80, 81, 82, 83, 84, 87, 88, 89, 91, 92, 93, 94, 99, 100, 101, 102, 104, 105, 108, 113, 114, 115, 116, 118, 120
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

The even version is A372591.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
        {1}   1  ()
      {1,2}   3  (2)
        {3}   4  (1,1)
      {1,3}   5  (3)
      {3,4}  12  (2,1,1)
    {2,3,4}  14  (4,1)
        {5}  16  (1,1,1,1)
      {1,5}  17  (7)
      {2,5}  18  (2,2,1)
      {3,5}  20  (3,1,1)
    {1,3,5}  21  (4,2)
    {2,3,5}  22  (5,1)
  {1,2,3,5}  23  (9)
    {1,4,5}  25  (3,3)
    {2,4,5}  26  (6,1)
  {1,2,4,5}  27  (2,2,2)
  {1,3,4,5}  29  (10)
  {2,3,4,5}  30  (3,2,1)
    {1,2,6}  35  (4,3)
    {2,3,6}  38  (8,1)
  {1,2,4,6}  43  (14)
  {1,3,4,6}  45  (3,2,2)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372586, complement A372587.
For minimum (A372437) we have A372439, complement A372440.
Positions of odd terms in A372441, zeros A071814.
For maximum (A372442, zeros A372436) we have A372588, complement A372589.
The complement is A372591.
For just binary indices:
- length: A000069, complement A001969
- sum: A158705, complement A158704
- minimum: A003159, complement A036554
- maximum: A053738, complement A053754
For just prime indices:
- length: A026424 (count A027193), complement A028260 (count A027187)
- sum: A300063 (count A058695), complement A300061 (count A058696)
- minimum: A340932 (count A026804), complement A340933 (count A026805)
- maximum: A244991 (count A027193), complement A244990 (count A027187)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[100],OddQ[DigitCount[#,2,1]+PrimeOmega[#]]&]

A372587 Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is even.

Original entry on oeis.org

6, 7, 10, 11, 13, 14, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 49, 50, 52, 56, 57, 58, 62, 69, 70, 72, 74, 75, 76, 77, 82, 83, 85, 86, 87, 88, 90, 92, 96, 98, 100, 102, 103, 104, 106, 107, 108, 109, 112, 117, 120, 123
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The odd version is A372586.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
            {2,3}   6  (2,1)
          {1,2,3}   7  (4)
            {2,4}  10  (3,1)
          {1,2,4}  11  (5)
          {1,3,4}  13  (6)
          {2,3,4}  14  (4,1)
            {2,5}  18  (2,2,1)
          {1,2,5}  19  (8)
          {2,3,5}  22  (5,1)
        {1,2,3,5}  23  (9)
            {4,5}  24  (2,1,1,1)
          {1,4,5}  25  (3,3)
          {2,4,5}  26  (6,1)
        {1,2,4,5}  27  (2,2,2)
          {3,4,5}  28  (4,1,1)
        {2,3,4,5}  30  (3,2,1)
      {1,2,3,4,5}  31  (11)
            {1,6}  33  (5,2)
            {2,6}  34  (7,1)
          {1,2,6}  35  (4,3)
          {1,3,6}  37  (12)
          {2,3,6}  38  (8,1)
		

Crossrefs

Positions of even terms in A372428, zeros A372427.
For minimum (A372437) we have A372440, complement A372439.
For length (A372441, zeros A071814) we have A372591, complement A372590.
For maximum (A372442, zeros A372436) we have A372589, complement A372588.
The complement is A372586.
For just binary indices:
- length: A001969, complement A000069
- sum: A158704, complement A158705
- minimum: A036554, complement A003159
- maximum: A053754, complement A053738
For just prime indices:
- length: A026424 A028260 (count A027187), complement (count A027193)
- sum: A300061 (count A058696), complement A300063 (count A058695)
- minimum: A340933 (count A026805), complement A340932 (count A026804)
- maximum: A244990 (count A027187), complement A244991 (count A027193)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],EvenQ[Total[bix[#]]+Total[prix[#]]]&]

Formula

Numbers k such that A029931(k) + A056239(k) is even.

A319241 Heinz numbers of strict integer partitions of even numbers. Squarefree numbers whose prime indices sum to an even number.

Original entry on oeis.org

1, 3, 7, 10, 13, 19, 21, 22, 29, 30, 34, 37, 39, 43, 46, 53, 55, 57, 61, 62, 66, 70, 71, 79, 82, 85, 87, 89, 91, 94, 101, 102, 107, 111, 113, 115, 118, 129, 130, 131, 133, 134, 138, 139, 146, 151, 154, 155, 159, 163, 165, 166, 173, 181, 183, 186, 187, 190, 193
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
From Peter Munn, Feb 04 2022: (Start)
For every odd squarefree number, s, exactly one of s and 2s is a term.
Closed under the commutative operation A350066(.,.).
Closed under the commutative operation A059897(.,.) forming a subgroup of the positive integers considered as a group under A059897. As subgroups, this sequence and A028982 are each a transversal of the other.
(End)

Examples

			30 is the Heinz number of (3,2,1), which is strict and has even weight, so 30 belongs to the sequence.
The sequence of all even-weight strict partitions begins: (), (2), (4), (3,1), (6), (8), (4,2), (5,1), (10), (3,2,1), (7,1), (12), (6,2), (14), (9,1), (16), (5,3), (8,2), (18), (11,1), (5,2,1), (4,3,1).
		

Crossrefs

Complement of the union of A319242 and A013929.
Intersection of A005117 and A300061.

Programs

  • Mathematica
    Select[Range[100],And[SquareFreeQ[#],EvenQ[Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]]]&]
  • PARI
    isok(m) = issquarefree(m) && !(vecsum(apply(primepi, factor(m)[,1])) % 2); \\ Michel Marcus, Feb 08 2022

Formula

{a(n) : n >= 1} = {A019565(A158704(n)) : n >= 1} = {A073675(A319242(n)) : n >= 1}. - Peter Munn, Feb 04 2022

A319242 Heinz numbers of strict integer partitions of odd numbers. Squarefree numbers whose prime indices sum to an odd number.

Original entry on oeis.org

2, 5, 6, 11, 14, 15, 17, 23, 26, 31, 33, 35, 38, 41, 42, 47, 51, 58, 59, 65, 67, 69, 73, 74, 77, 78, 83, 86, 93, 95, 97, 103, 105, 106, 109, 110, 114, 119, 122, 123, 127, 137, 141, 142, 143, 145, 149, 157, 158, 161, 167, 170, 174, 177, 178, 179, 182, 185, 191
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			105 is the Heinz number of (4,3,2), which is strict and has odd weight, so 105 belongs to the sequence.
The sequence of all odd-weight strict partitions begins: (1), (3), (2,1), (5), (4,1), (3,2), (7), (9), (6,1), (11), (5,2), (4,3), (8,1), (13), (4,2,1).
		

Crossrefs

Complement of the union of A319241 and A013929.

Programs

  • Mathematica
    Select[Range[100],And[SquareFreeQ[#],OddQ[Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]]]&]

A343942 Number of even-length strict integer partitions of 2n+1.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 9, 13, 19, 27, 38, 52, 71, 96, 128, 170, 224, 292, 380, 491, 630, 805, 1024, 1295, 1632, 2049, 2560, 3189, 3959, 4896, 6038, 7424, 9100, 11125, 13565, 16496, 20013, 24223, 29249, 35244, 42378, 50849, 60896, 72789, 86841, 103424, 122960, 145937, 172928
Offset: 0

Views

Author

Gus Wiseman, Jun 09 2021

Keywords

Comments

By conjugation, also the number of integer partitions of 2n+1 covering an initial interval of positive integers with greatest part even.

Examples

			The a(1) = 1 through a(7) = 13 strict partitions:
  (2,1)  (3,2)  (4,3)  (5,4)  (6,5)      (7,6)      (8,7)
         (4,1)  (5,2)  (6,3)  (7,4)      (8,5)      (9,6)
                (6,1)  (7,2)  (8,3)      (9,4)      (10,5)
                       (8,1)  (9,2)      (10,3)     (11,4)
                              (10,1)     (11,2)     (12,3)
                              (5,3,2,1)  (12,1)     (13,2)
                                         (5,4,3,1)  (14,1)
                                         (6,4,2,1)  (6,4,3,2)
                                         (7,3,2,1)  (6,5,3,1)
                                                    (7,4,3,1)
                                                    (7,5,2,1)
                                                    (8,4,2,1)
                                                    (9,3,2,1)
		

Crossrefs

Ranked by A005117 (strict), A028260 (even length), and A300063 (odd sum).
Odd bisection of A067661 (non-strict: A027187).
The non-strict version is A236914.
The opposite type of strict partition (odd length and even sum) is A344650.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&EvenQ[Length[#]]&]],{n,0,15}]

Formula

The Heinz numbers are A005117 /\ A028260 /\ A300063.

Extensions

More terms from Bert Dobbelaere, Jun 12 2021

A349150 Heinz numbers of integer partitions with at most one odd part.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 11, 13, 14, 15, 17, 18, 19, 21, 23, 26, 27, 29, 31, 33, 35, 37, 38, 39, 41, 42, 43, 45, 47, 49, 51, 53, 54, 57, 58, 59, 61, 63, 65, 67, 69, 71, 73, 74, 77, 78, 79, 81, 83, 86, 87, 89, 91, 93, 95, 97, 98, 99, 101, 103, 105, 106, 107, 109
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with at most one odd prime index.
Also Heinz numbers of partitions with conjugate alternating sum <= 1.

Examples

			The terms and their prime indices begin:
      1: {}          23: {9}         49: {4,4}
      2: {1}         26: {1,6}       51: {2,7}
      3: {2}         27: {2,2,2}     53: {16}
      5: {3}         29: {10}        54: {1,2,2,2}
      6: {1,2}       31: {11}        57: {2,8}
      7: {4}         33: {2,5}       58: {1,10}
      9: {2,2}       35: {3,4}       59: {17}
     11: {5}         37: {12}        61: {18}
     13: {6}         38: {1,8}       63: {2,2,4}
     14: {1,4}       39: {2,6}       65: {3,6}
     15: {2,3}       41: {13}        67: {19}
     17: {7}         42: {1,2,4}     69: {2,9}
     18: {1,2,2}     43: {14}        71: {20}
     19: {8}         45: {2,2,3}     73: {21}
     21: {2,4}       47: {15}        74: {1,12}
		

Crossrefs

The case of no odd parts is A066207, counted by A000041 up to 0's.
Requiring all odd parts gives A066208, counted by A000009.
These partitions are counted by A100824, even-length case A349149.
These are the positions of 0's and 1's in A257991.
The conjugate partitions are ranked by A349151.
The case of one odd part is A349158, counted by A000070 up to 0's.
A056239 adds up prime indices, row sums of A112798.
A122111 is a representation of partition conjugation.
A300063 ranks partitions of odd numbers, counted by A058695 up to 0's.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A325698 ranks partitions with as many even as odd parts, counted by A045931.
A340932 ranks partitions whose least part is odd, counted by A026804.
A345958 ranks partitions with alternating sum 1.
A349157 ranks partitions with as many even parts as odd conjugate parts.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[Reverse[primeMS[#]],_?OddQ]<=1&]

Formula

Union of A066207 (no odd parts) and A349158 (one odd part).

A366321 Numbers m whose prime indices have even sum k such that k/2 is not a prime index of m.

Original entry on oeis.org

1, 3, 7, 10, 13, 16, 19, 21, 22, 27, 28, 29, 34, 36, 37, 39, 43, 46, 48, 52, 53, 55, 57, 61, 62, 64, 66, 71, 75, 76, 79, 81, 82, 85, 87, 88, 89, 90, 91, 94, 100, 101, 102, 107, 108, 111, 113, 115, 116, 117, 118, 120, 129, 130, 131, 133, 134, 136, 138, 139, 144
Offset: 0

Views

Author

Gus Wiseman, Oct 13 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 84 are y = {1,1,2,4}, with even sum 8; but 8/2 = 4 is in y, so 84 is not in the sequence.
The terms together with their prime indices begin:
    1: {}
    3: {2}
    7: {4}
   10: {1,3}
   13: {6}
   16: {1,1,1,1}
   19: {8}
   21: {2,4}
   22: {1,5}
   27: {2,2,2}
   28: {1,1,4}
   29: {10}
   34: {1,7}
   36: {1,1,2,2}
		

Crossrefs

Partitions of this type are counted by A182616, strict A365828.
A066207 lists numbers with all even prime indices, odd A066208.
A086543 lists numbers with at least one odd prime index, counted by A366322.
A300063 ranks partitions of odd numbers.
A366319 ranks partitions of n not containing n/2.
A366321 ranks partitions of 2k that do not contain k.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[Total[prix[#]]]&&FreeQ[prix[#],Total[prix[#]]/2]&]
Previous Showing 31-40 of 49 results. Next