cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 68 results. Next

A381452 Number of multisets that can be obtained by partitioning the prime indices of n into a set of multisets and taking their sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 4, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 7, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 6, 1, 2, 3, 3, 2, 5, 1, 6, 2, 2, 1, 8, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2025

Keywords

Comments

First differs from A045778 at a(24) = 4, A045778(24) = 5.
Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a factorization of n into distinct factors > 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition can be regarded as an arrow in the poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Sets of multisets are generally not transitive. For example, we have arrows: {{1},{2},{1,2}}: {1,1,2,2} -> {1,2,3} and {{1,2},{3}}: {1,2,3} -> {3,3}, but there is no set of multisets {1,1,2,2} -> {3,3}.

Examples

			The prime indices of 24 are {1,1,1,2}, with 5 partitions into a set of multisets:
  {{1,1,1,2}}
  {{1},{1,1,2}}
  {{2},{1,1,1}}
  {{1,1},{1,2}}
  {{1},{2},{1,1}}
with block-sums: {5}, {1,4}, {2,3}, {2,3}, {1,2,2}, of which 4 are distinct, so a(24) = 4.
		

Crossrefs

Before taking sums we had A045778.
If each block is a set we have A381441, before sums A050326.
For distinct block-sums instead of blocks we have A381637, before sums A321469.
Other multiset partitions of prime indices:
- For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
- For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
- For set multipartitions (A050320) see A381078 (upper), A381454 (lower).
- For sets of constant multisets (A050361) see A381715.
- For set systems with distinct sums (A381633) see A381634, zeros A293243.
- For sets of constant multisets with distinct sums (A381635) see A381716, A381636.
More on sets of multisets: A261049, A317776, A317775, A296118, A318286.
A000041 counts integer partitions, strict A000009.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&]]],{n,100}]

Formula

a(A002110(n)) = A066723(n).

A381993 Number of integer partitions of n that cannot be partitioned into constant multisets with a common sum.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 4, 13, 13, 25, 33, 54, 54, 99, 124, 166, 207, 295, 352, 488, 591, 780, 987, 1253, 1488, 1951, 2419, 2993, 3665, 4563, 5508, 6840, 8270, 10127, 12289, 14869, 17781, 21635, 25992, 31167, 37184, 44581, 53008, 63259, 75076, 89080, 105531, 124752, 146842, 173516, 204141, 239921, 281461, 329929, 385852
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2025

Keywords

Examples

			The multiset partition {{2},{2},{1,1},{1,1}} has both properties (constant blocks and common sum), so (2,2,1,1,1,1) is not counted under a(8). We can also use {{2,2},{1,1,1,1}}.
The a(3) = 1 through a(8) = 13 partitions:
  (21)  (31)  (32)    (42)   (43)      (53)
              (41)    (51)   (52)      (62)
              (221)   (321)  (61)      (71)
              (311)   (411)  (322)     (332)
              (2111)         (331)     (431)
                             (421)     (521)
                             (511)     (611)
                             (2221)    (3221)
                             (3211)    (3311)
                             (4111)    (4211)
                             (22111)   (5111)
                             (31111)   (32111)
                             (211111)  (311111)
		

Crossrefs

Twice-partitions of this type (constant with equal) are counted by A279789.
Multiset partitions of this type are ranked by A326534 /\ A355743.
For distinct instead of equal block-sums we have A381717.
These partitions are ranked by A381871, zeros of A381995.
For strict instead of constant blocks we have A381994, see A381719, A382080.
The strict case is A382076.
Normal multiset partitions of this type are counted by A382204.
A001055 counts factorizations, strict A045778.
A050361 counts factorizations into distinct prime powers, see A381715.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn,{ptn,IntegerPartitions[Length[y]]}];
    Table[Length[Select[IntegerPartitions[n],Length[Select[Join@@@Tuples[mce/@Split[#]],SameQ@@Total/@#&]]==0&]],{n,0,30}]

Extensions

a(31)-a(54) from Robert Price, Mar 31 2025

A381995 Number of ways to partition the prime indices of n into constant blocks with a common sum.

Original entry on oeis.org

1, 1, 1, 2, 1, 0, 1, 2, 2, 0, 1, 1, 1, 0, 0, 3, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 2, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 4, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2025

Keywords

Comments

Also the number of factorizations of n into prime powers > 1 with equal sums of prime indices.

Examples

			The prime indices of 144 are {1,1,1,1,2,2}, with the following 2 multiset partitions into constant blocks with a common sum:
  {{2,2},{1,1,1,1}}
  {{2},{2},{1,1},{1,1}}
so a(144) = 2.
		

Crossrefs

For just constant blocks we have A000688.
Twice-partitions of this type are counted by A279789.
For just a common sum we have A321455.
For distinct instead of equal sums we have A381635.
Positions of 0 are A381871, counted by A381993.
MM-numbers of these multiset partitions are A382215.
A001055 counts factorizations, strict A045778.
A050361 counts factorizations into distinct prime powers.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.
A353864 counts rucksack partitions, ranked by A353866.
Cf. A279784, A295935, A381453 (lower), A381455 (upper).

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Table[Length[Select[mps[prix[n]], SameQ@@Total/@#&&And@@SameQ@@@#&]],{n,100}]

Formula

A323774(n) = Sum_{A056239(k)=n} a(k). Gus Wiseman, Apr 25 2025

A381435 Numbers appearing more than once in A381431 (section-sum partition of prime indices).

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 25, 26, 29, 31, 34, 37, 38, 39, 41, 43, 46, 47, 49, 51, 52, 53, 57, 58, 59, 61, 62, 65, 67, 68, 69, 71, 73, 74, 76, 79, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 101, 103, 104, 106, 107, 109, 111, 113, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Feb 27 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The terms together with their prime indices begin:
   5: {3}
   7: {4}
  11: {5}
  13: {6}
  17: {7}
  19: {8}
  23: {9}
  25: {3,3}
  26: {1,6}
  29: {10}
  31: {11}
  34: {1,7}
  37: {12}
  38: {1,8}
  39: {2,6}
  41: {13}
  43: {14}
  46: {1,9}
  47: {15}
  49: {4,4}
  51: {2,7}
  52: {1,1,6}
		

Crossrefs

- fixed points are A000961, A000005
- conjugate is A048767, fixed points A048768, A217605
- all numbers present are A381432, conjugate A351294
- numbers missing are A381433, conjugate A351295
- numbers appearing only once are A381434, conjugate A381540
- numbers appearing more than once are A381435 (this), conjugate A381541
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts section-sum partitions, complement A351293.
A381436 lists section-sum partition of prime indices, conjugate A381440.
Set multipartitions: A050320, A089259, A116540, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Select[Range[100],Count[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]>1&]

Formula

The complement is A381434 U A381433.

A323718 Array read by antidiagonals upwards where A(n,k) is the number of k-times partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 5, 6, 4, 1, 1, 1, 7, 15, 10, 5, 1, 1, 1, 11, 28, 34, 15, 6, 1, 1, 1, 15, 66, 80, 65, 21, 7, 1, 1, 1, 22, 122, 254, 185, 111, 28, 8, 1, 1, 1, 30, 266, 604, 739, 371, 175, 36, 9, 1, 1, 1, 42, 503, 1785, 2163, 1785, 672, 260, 45, 10, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 25 2019

Keywords

Comments

A k-times partition of n for k > 1 is a sequence of (k-1)-times partitions, one of each part in an integer partition of n. A 1-times partition of n is just an integer partition of n, and the only 0-times partition of n is the number n itself.

Examples

			Array begins:
       k=0:   k=1:   k=2:   k=3:   k=4:   k=5:
  n=0:  1      1      1      1      1      1
  n=1:  1      1      1      1      1      1
  n=2:  1      2      3      4      5      6
  n=3:  1      3      6     10     15     21
  n=4:  1      5     15     34     65    111
  n=5:  1      7     28     80    185    371
  n=6:  1     11     66    254    739   1785
  n=7:  1     15    122    604   2163   6223
  n=8:  1     22    266   1785   8120  28413
  n=9:  1     30    503   4370  24446 101534
The A(4,2) = 15 twice-partitions:
  (4)  (31)    (22)    (211)      (1111)
       (3)(1)  (2)(2)  (11)(2)    (11)(11)
                       (2)(11)    (111)(1)
                       (21)(1)    (11)(1)(1)
                       (2)(1)(1)  (1)(1)(1)(1)
		

Crossrefs

Columns: A000012 (k=0), A000041 (k=1), A063834 (k=2), A301595 (k=3).
Rows: A000027 (n=2), A000217 (n=3), A006003 (n=4).
Main diagonal gives A306187.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1,
          1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(d-k, k), k=0..d), d=0..14);  # Alois P. Heinz, Jan 25 2019
  • Mathematica
    ptnlev[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Tuples[ptnlev[#,k-1]&/@ptn],{ptn,IntegerPartitions[n]}]];
    Table[Length[ptnlev[sum-k,k]],{sum,0,12},{k,0,sum}]
    (* Second program: *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0 || i == 1, 1,
         b[n, i - 1, k] + b[i, i, k - 1]*b[n - i, Min[n - i, i], k]];
    A[n_, k_] := b[n, n, k];
    Table[Table[A[d - k, k], {k, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, May 13 2021, after Alois P. Heinz *)

Formula

Column k is the formal power product transform of column k-1, where the formal power product transform of a sequence q with offset 1 is the sequence whose ordinary generating function is Product_{n >= 1} 1/(1 - q(n) * x^n).
A(n,k) = Sum_{i=0..k} binomial(k,i) * A327639(n,i). - Alois P. Heinz, Sep 20 2019

A381434 Numbers appearing only once in A381431 (section-sum partition of prime indices).

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 22, 27, 28, 32, 33, 35, 40, 44, 45, 50, 55, 56, 64, 75, 77, 80, 81, 88, 98, 99, 100, 112, 128, 130, 135, 160, 170, 175, 176, 182, 190, 195, 196, 200
Offset: 1

Views

Author

Gus Wiseman, Feb 27 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   20: {1,1,3}
   22: {1,5}
   27: {2,2,2}
   28: {1,1,4}
   32: {1,1,1,1,1}
		

Crossrefs

- fixed points are A000961, A000005
- conjugate is A048767, fixed points A048768, A217605
- all numbers present are A381432, conjugate A351294
- numbers missing are A381433, conjugate A351295
- numbers appearing only once are A381434 (this), conjugate A381540
- numbers appearing more than once are A381435, conjugate A381541
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts section-sum partitions, complement A351293.
A381436 lists section-sum partition of prime indices, conjugate A381440.
Set multipartitions: A050320, A089259, A116540, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Select[Range[100],Count[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]==1&]

Formula

The complement is A381433 U A381435.

A381719 Numbers whose prime indices cannot be partitioned into sets with a common sum.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 184, 188, 189, 192
Offset: 1

Views

Author

Gus Wiseman, Apr 22 2025

Keywords

Comments

Differs from A059404, A323055, A376250 in lacking 150.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
Also numbers that cannot be factored into squarefree numbers with a common sum of prime indices (A056239).

Examples

			The prime indices of 150 are {1,2,3,3}, and {{3},{3},{1,2}} is a partition into sets with a common sum, so 150 is not in the sequence.
		

Crossrefs

Twice-partitions of this type (sets with a common sum) are counted by A279788.
These multiset partitions (sets with a common sum) are ranked by A326534 /\ A302478.
For distinct block-sums we have A381806, counted by A381990 (complement A381992).
For constant blocks we have A381871 (zeros of A381995), counted by A381993.
Partitions of this type are counted by A381994.
These are the zeros of A382080.
Normal multiset partitions of this type are counted by A382429, see A326518.
The complement counted by A383308.
A000041 counts integer partitions, strict A000009.
A001055 counts factorizations, strict A045778.
A050320 counts factorizations into squarefree numbers, see A381078, A381454.
A050326 counts factorizations into distinct squarefree numbers.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.
A381633 counts set systems with distinct sums, see A381634, A293243.
Set multipartitions: A089259, A116540, A270995, A296119, A318360.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Select[Range[100],Select[mps[prix[#]], SameQ@@Total/@#&&And@@UnsameQ@@@#&]=={}&]

A382080 Number of ways to partition the prime indices of n into sets with a common sum.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
Also the number of factorizations of n into squarefree numbers > 1 with equal sums of prime indices.

Examples

			The prime indices of 900 are {1,1,2,2,3,3}, with the following partitions into sets with a common sum:
  {{1,2,3},{1,2,3}}
  {{3},{3},{1,2},{1,2}}
So a(900) = 2.
		

Crossrefs

For just sets we have A050320, distinct A050326.
Twice-partitions of this type are counted by A279788.
For just a common sum we have A321455.
MM-numbers of these multiset partitions are A326534 /\ A302478.
For distinct instead of equal sums we have A381633.
For constant instead of strict blocks we have A381995.
Positions of 0 are A381719, counted by A381994.
A000688 counts factorizations into prime powers, distinct A050361.
A001055 counts factorizations, strict A045778.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Table[Length[Select[mps[prix[n]], SameQ@@Total/@#&&And@@UnsameQ@@@#&]],{n,100}]

A321468 Number of factorizations of n! into factors > 1 that can be obtained by taking the multiset union of a choice of factorizations of each positive integer from 2 to n into factors > 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 4, 10, 20, 40, 40, 116, 116, 232, 464, 1440, 1440, 4192, 4192, 11640, 23280, 46560, 46560, 157376
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Comments

a(n) is the number of factorizations finer than (2*3*...*n) in the poset of factorizations of n! into factors > 1, ordered by refinement.

Examples

			The a(2) = 1 through a(8) = 10 factorizations:
2  2*3  2*3*4    2*3*4*5    2*3*4*5*6      2*3*4*5*6*7      2*3*4*5*6*7*8
        2*2*2*3  2*2*2*3*5  2*2*2*3*5*6    2*2*2*3*5*6*7    2*2*2*3*5*6*7*8
                            2*2*3*3*4*5    2*2*3*3*4*5*7    2*2*3*3*4*5*7*8
                            2*2*2*2*3*3*5  2*2*2*2*3*3*5*7  2*2*3*4*4*5*6*7
                                                            2*2*2*2*3*3*5*7*8
                                                            2*2*2*2*3*4*5*6*7
                                                            2*2*2*3*3*4*4*5*7
                                                            2*2*2*2*2*2*3*5*6*7
                                                            2*2*2*2*2*3*3*4*5*7
                                                            2*2*2*2*2*2*2*3*3*5*7
For example, 2*2*2*2*2*2*3*5*6*7 = (2)*(3)*(2*2)*(5)*(6)*(7)*(2*2*2), so (2*2*2*2*2*2*3*5*6*7) is counted under a(8).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Union[Sort/@Join@@@Tuples[facs/@Range[2,n]]]],{n,10}]

A321470 Number of integer partitions of the n-th triangular number 1 + 2 + ... + n that can be obtained by choosing a partition of each integer from 1 to n and combining.

Original entry on oeis.org

1, 1, 2, 5, 16, 54, 212, 834, 3558, 15394, 69512, 313107, 1474095, 6877031, 32877196
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Comments

a(n) is the number of integer partitions finer than (n, ..., 3, 2, 1) in the poset of integer partitions of 1 + 2 + ... + n ordered by refinement.
a(n+1)/a(n) appears to converge as n -> oo. - Chai Wah Wu, Nov 14 2018

Examples

			The a(1) = 1 through a(4) = 16 partitions:
  (1)  (21)   (321)     (4321)
       (111)  (2211)    (32221)
              (3111)    (33211)
              (21111)   (42211)
              (111111)  (43111)
                        (222211)
                        (322111)
                        (331111)
                        (421111)
                        (2221111)
                        (3211111)
                        (4111111)
                        (22111111)
                        (31111111)
                        (211111111)
                        (1111111111)
The partition (222211) is the combination of (22)(21)(2)(1), so is counted under a(4). The partition (322111) is the combination of (22)(3)(11)(1), (31)(21)(2)(1), or (211)(3)(2)(1), so is also counted under a(4).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Union[Sort/@Join@@@Tuples[IntegerPartitions/@Range[1,n]]]],{n,6}]
  • Python
    from collections import Counter
    from itertools import count, islice
    from sympy.utilities.iterables import partitions
    def A321470_gen(): # generator of terms
        aset = {(1,)}
        yield 1
        for n in count(2):
            yield len(aset)
            aset = {tuple(sorted(p+q)) for p in aset for q in (tuple(sorted(Counter(q).elements())) for q in partitions(n))}
    A321470_list = list(islice(A321470_gen(),10)) # Chai Wah Wu, Sep 20 2023

Formula

a(n) <= A173519(n). - David A. Corneth, Sep 20 2023

Extensions

a(9)-a(11) from Alois P. Heinz, Nov 12 2018
a(12)-a(13) from Chai Wah Wu, Nov 13 2018
a(14) from Chai Wah Wu, Sep 20 2023
Previous Showing 31-40 of 68 results. Next