A330624
Number of non-isomorphic series-reduced rooted trees whose leaves are sets (not necessarily disjoint) with a total of n elements.
Original entry on oeis.org
1, 1, 3, 10, 61, 410, 3630
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 10 trees:
{1} {1,2} {1,2,3}
{{1},{1}} {{1},{1,2}}
{{1},{2}} {{1},{2,3}}
{{1},{1},{1}}
{{1},{1},{2}}
{{1},{2},{3}}
{{1},{{1},{1}}}
{{1},{{1},{2}}}
{{1},{{2},{3}}}
{{2},{{1},{1}}}
The version with multisets as leaves is
A330465.
The singleton-reduced case is
A330626.
A labeled version is
A330625 (strongly normal).
The case with all atoms distinct is
A141268.
The case where all leaves are singletons is
A330470.
A331678
Number of lone-child-avoiding locally disjoint rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n.
Original entry on oeis.org
1, 3, 6, 18, 44, 149, 450, 1573, 5352, 19283, 69483, 257206
Offset: 1
The a(1) = 1 through a(4) = 18 trees:
(1) (2) (3) (4)
(11) (12) (13)
((1)(1)) (111) (22)
((1)(2)) (112)
((1)(1)(1)) (1111)
((1)((1)(1))) ((1)(3))
((2)(2))
((2)(11))
((11)(11))
((1)(1)(2))
((1)((1)(2)))
((2)((1)(1)))
((1)(1)(1)(1))
((11)((1)(1)))
((1)((1)(1)(1)))
((1)(1)((1)(1)))
(((1)(1))((1)(1)))
((1)((1)((1)(1))))
The case where all leaves are singletons is
A316696.
The case where all leaves are (1) is
A316697.
The non-locally disjoint version is
A319312.
The case with all atoms equal to 1 is
A331679.
Cf.
A000081,
A000669,
A001678,
A005804,
A060356,
A141268,
A196545,
A300660,
A316471,
A316694,
A316495,
A330465,
A331680,
A331687.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
mpti[m_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[mpti/@p]],disjointQ],{p,Select[mps[m],Length[#]>1&]}],m];
Table[Sum[Length[mpti[m]],{m,Sort/@IntegerPartitions[n]}],{n,8}]
A330625
Number of series-reduced rooted trees whose leaves are sets (not necessarily disjoint) with multiset union a strongly normal multiset of size n.
Original entry on oeis.org
1, 1, 3, 14, 123, 1330, 19694
Offset: 0
The a(1) = 1 through a(3) = 14 trees:
{1} {1,2} {1,2,3}
{{1},{1}} {{1},{1,2}}
{{1},{2}} {{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{1},{1}}
{{1},{1},{2}}
{{1},{2},{3}}
{{1},{{1},{1}}}
{{1},{{1},{2}}}
{{1},{{2},{3}}}
{{2},{{1},{1}}}
{{2},{{1},{3}}}
{{3},{{1},{2}}}
The generalization where the leaves are multisets is
A330467.
The singleton-reduced case is
A330628.
The case with all atoms distinct is
A005804.
The case with all atoms equal is
A196545.
The case where all leaves are singletons is
A330471.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
srtrees[m_]:=Prepend[Join@@Table[Tuples[srtrees/@p],{p,Select[mps[m],Length[#1]>1&]}],m];
Table[Sum[Length[Select[srtrees[s],FreeQ[#,{_,x_Integer,x_Integer,_}]&]],{s,strnorm[n]}],{n,0,5}]
A320174
Number of series-reduced rooted trees whose leaves are constant integer partitions whose multiset union is an integer partition of n.
Original entry on oeis.org
1, 3, 6, 19, 55, 200, 713, 2740, 10651, 42637, 173012, 713280, 2972389, 12514188, 53119400, 227140464, 977382586, 4229274235, 18391269922, 80330516578, 352269725526, 1550357247476, 6845517553493, 30316222112019, 134626183784975, 599341552234773, 2674393679352974
Offset: 1
The a(1) = 1 through a(4) = 19 trees:
(1) (2) (3) (4)
(11) (111) (22)
((1)(1)) ((1)(2)) (1111)
((1)(11)) ((1)(3))
((1)(1)(1)) ((2)(2))
((1)((1)(1))) ((2)(11))
((1)(111))
((11)(11))
((1)(1)(2))
((1)(1)(11))
((1)((1)(2)))
((2)((1)(1)))
((1)((1)(11)))
((1)(1)(1)(1))
((11)((1)(1)))
((1)((1)(1)(1)))
((1)(1)((1)(1)))
(((1)(1))((1)(1)))
((1)((1)((1)(1))))
Cf.
A000081,
A000311,
A000669,
A001678,
A005804,
A141268,
A292504,
A300660,
A317099,
A319312,
A320173,
A320175.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
dot[m_]:=If[SameQ@@m,Prepend[#,m],#]&[Join@@Table[Union[Sort/@Tuples[dot/@p]],{p,Select[mps[m],Length[#]>1&]}]];
Table[Length[Join@@Table[dot[m],{m,IntegerPartitions[n]}]],{n,10}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(v=vector(n)); for(n=1, n, v[n]=numdiv(n) + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018
A320175
Number of series-reduced rooted trees whose leaves are strict integer partitions whose multiset union is an integer partition of n.
Original entry on oeis.org
1, 2, 5, 13, 37, 120, 395, 1381, 4931, 18074, 67287, 254387, 972559, 3756315, 14629237, 57395490, 226613217, 899773355, 3590349661, 14390323014, 57907783039, 233867667197, 947601928915, 3851054528838, 15693587686823, 64114744713845, 262543966114921, 1077406218930902
Offset: 1
The a(1) = 1 through a(4) = 13 trees:
(1) (2) (3) (4)
((1)(1)) (21) (31)
((1)(2)) ((1)(3))
((1)(1)(1)) ((2)(2))
((1)((1)(1))) ((1)(21))
((1)(1)(2))
((1)((1)(2)))
((2)((1)(1)))
((1)(1)(1)(1))
((1)((1)(1)(1)))
((1)(1)((1)(1)))
(((1)(1))((1)(1)))
((1)((1)((1)(1))))
Cf.
A000081,
A000311,
A000669,
A001678,
A005804,
A141268,
A292504,
A300660,
A317099,
A319312,
A320173,
A320174.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
sot[m_]:=If[UnsameQ@@m,Prepend[#,m],#]&[Join@@Table[Union[Sort/@Tuples[sot/@p]],{p,Select[mps[m],Length[#]>1&]}]];
Table[Length[Join@@Table[sot[m],{m,IntegerPartitions[n]}]],{n,10}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(p=prod(k=1, n, 1 + x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018
A320171
Number of series-reduced rooted identity trees whose leaves are integer partitions whose multiset union is an integer partition of n.
Original entry on oeis.org
1, 2, 5, 11, 29, 82, 247, 782, 2579, 8702, 29975, 104818, 371111, 1327307, 4788687, 17404838, 63669763, 234237605, 866090021, 3216738344, 11995470691, 44894977263, 168582174353, 634939697164, 2398004674911, 9079614633247, 34458722286825, 131059771522401
Offset: 1
The a(1) = 1 through a(4) = 11 rooted identity trees:
(1) (2) (3) (4)
(11) (21) (22)
(111) (31)
((1)(2)) (211)
((1)(11)) (1111)
((1)(3))
((1)(21))
((2)(11))
((1)(111))
((1)((1)(2)))
((1)((1)(11)))
Cf.
A000081,
A000311,
A000669,
A001678,
A005804,
A141268,
A292504,
A300660,
A319312,
A320172,
A320177,
A320178.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
gig[m_]:=Prepend[Join@@Table[Union[Sort/@Select[Sort/@Tuples[gig/@mtn],UnsameQ@@#&]],{mtn,Select[mps[m],Length[#]>1&]}],m];
Table[Sum[Length[gig[y]],{y,IntegerPartitions[n]}],{n,8}]
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
seq(n)={my(v=vector(n)); for(n=1, n, v[n]=numbpart(n) + WeighT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018
A320177
Number of series-reduced rooted identity trees whose leaves are strict integer partitions whose multiset union is an integer partition of n.
Original entry on oeis.org
1, 1, 3, 5, 11, 26, 65, 169, 463, 1294, 3691, 10700, 31417, 93175, 278805, 840424, 2549895, 7780472, 23860359, 73500838, 227330605, 705669634, 2197750615, 6865335389, 21505105039, 67533738479, 212575923471, 670572120240, 2119568530289, 6712115439347
Offset: 1
The a(1) = 1 through a(5) = 11 rooted trees:
(1) (2) (3) (4) (5)
(21) (31) (32)
((1)(2)) ((1)(3)) (41)
((1)(12)) ((1)(4))
((1)((1)(2))) ((2)(3))
((1)(13))
((2)(12))
((1)((1)(3)))
((2)((1)(2)))
((1)((1)(12)))
((1)((1)((1)(2))))
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
gog[m_]:=If[UnsameQ@@m,Prepend[#,m],#]&[Join@@Table[Select[Union[Sort/@Tuples[gog/@p]],UnsameQ@@#&],{p,Select[mps[m],Length[#]>1&]}]];
Table[Length[Join@@Table[gog[m],{m,IntegerPartitions[n]}]],{n,10}]
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
seq(n)={my(p=prod(k=1, n, 1 + x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) + WeighT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018
A320178
Number of series-reduced rooted identity trees whose leaves are constant integer partitions whose multiset union is an integer partition of n.
Original entry on oeis.org
1, 2, 4, 8, 19, 53, 151, 459, 1445, 4634, 15154, 50253, 168607, 571212, 1951588, 6715575, 23255444, 80978697, 283373024, 995995996, 3514614634, 12446666967, 44222390525, 157587392768, 563096832839, 2017121728223, 7242436444030, 26059512879605, 93952946906117
Offset: 1
The a(1) = 1 through a(5) = 19 rooted trees:
(1) (2) (3) (4) (5)
(11) (111) (22) (11111)
((1)(2)) (1111) ((1)(4))
((1)(11)) ((1)(3)) ((2)(3))
((2)(11)) ((1)(22))
((1)(111)) ((3)(11))
((1)((1)(2))) ((2)(111))
((1)((1)(11))) ((1)(1111))
((11)(111))
((1)(2)(11))
((1)((1)(3)))
((2)((1)(2)))
((11)((1)(2)))
((1)((2)(11)))
((2)((1)(11)))
((1)((1)(111)))
((11)((1)(11)))
((1)((1)((1)(2))))
((1)((1)((1)(11))))
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
gob[m_]:=If[SameQ@@m,Prepend[#,m],#]&[Join@@Table[Select[Union[Sort/@Tuples[gob/@p]],UnsameQ@@#&],{p,Select[mps[m],Length[#]>1&]}]];
Table[Length[Join@@Table[gob[m],{m,IntegerPartitions[n]}]],{n,10}]
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
seq(n)={my(v=vector(n)); for(n=1, n, v[n]=numdiv(n) + WeighT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018
A320289
Number of phylogenetic trees with n labels and no singleton leaves.
Original entry on oeis.org
0, 1, 1, 4, 11, 86, 477, 4810, 40679, 496522, 5662933, 81759910, 1169640551, 19622623190, 336215135973, 6455705990674, 128445712218263, 2785761076726066, 62980942321570981, 1525318051255683598, 38566041706375722071, 1032726237783455193662
Offset: 1
The a(2) = 1 through a(5) = 11 phylogenetic trees:
(12) (123) (1234) (12345)
((12)(34)) ((12)(345))
((13)(24)) ((13)(245))
((14)(23)) ((14)(235))
((15)(234))
((23)(145))
((24)(135))
((25)(134))
((34)(125))
((35)(124))
((45)(123))
Cf.
A000311,
A000669,
A002865,
A005804,
A141268,
A300660,
A304966,
A304967,
A319312,
A320294,
A320295.
-
numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
rotf[n_]:=rotf[n]=If[n==1,0,1+Sum[numSetPtnsOfType[p]*Times@@rotf/@p,{p,Select[IntegerPartitions[n],Length[#]>1&]}]];
Array[rotf,20]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
b(n,k)={my(v=vector(n)); for(n=2, n, v[n]=binomial(n+k-1, n) + EulerT(v[1..n])[n]); v}
seq(n)={my(M=Mat(vectorv(n, k, b(n,k)))); vector(n, k, sum(i=1, k, binomial(k, i)*(-1)^(k-i)*M[i,k]))} \\ Andrew Howroyd, Oct 26 2018
A331684
Number of locally disjoint enriched identity p-trees of weight n.
Original entry on oeis.org
1, 1, 2, 3, 6, 14, 30, 68, 157, 379, 901, 2229, 5488, 13846, 34801, 89368, 228186, 592943, 1533511, 4026833
Offset: 1
The a(1) = 1 through a(6) = 14 enriched p-trees:
1 2 3 4 5 6
(21) (31) (32) (42)
((21)1) (41) (51)
((21)2) (321)
((31)1) ((21)3)
(((21)1)1) ((31)2)
((32)1)
(3(21))
((41)1)
((21)21)
(((21)1)2)
(((21)2)1)
(((31)1)1)
((((21)1)1)1)
The non-identity version is
A331687.
Locally disjoint identity trees are
A316471.
Enriched identity p-trees are
A331875, with locally disjoint case
A331687.
Cf.
A000669,
A005804,
A141268,
A300660,
A316696,
A316697,
A331678,
A331679,
A331680,
A331683,
A331686,
A331783,
A331874.
-
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
ldeip[n_]:=Prepend[Select[Join@@Table[Tuples[ldeip/@p],{p,Rest[IntegerPartitions[n]]}],UnsameQ@@#&&disjointQ[DeleteCases[#,_Integer]]&],n];
Table[Length[ldeip[n]],{n,12}]
Comments