cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A330624 Number of non-isomorphic series-reduced rooted trees whose leaves are sets (not necessarily disjoint) with a total of n elements.

Original entry on oeis.org

1, 1, 3, 10, 61, 410, 3630
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2019

Keywords

Comments

A rooted tree is series-reduced if it has no unary branchings, so every non-leaf node covers at least two other nodes.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 10 trees:
  {1}  {1,2}      {1,2,3}
       {{1},{1}}  {{1},{1,2}}
       {{1},{2}}  {{1},{2,3}}
                  {{1},{1},{1}}
                  {{1},{1},{2}}
                  {{1},{2},{3}}
                  {{1},{{1},{1}}}
                  {{1},{{1},{2}}}
                  {{1},{{2},{3}}}
                  {{2},{{1},{1}}}
		

Crossrefs

The version with multisets as leaves is A330465.
The singleton-reduced case is A330626.
A labeled version is A330625 (strongly normal).
The case with all atoms distinct is A141268.
The case where all leaves are singletons is A330470.

A331678 Number of lone-child-avoiding locally disjoint rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 3, 6, 18, 44, 149, 450, 1573, 5352, 19283, 69483, 257206
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2020

Keywords

Comments

Lone-child-avoiding means there are no unary branchings. Locally disjoint means no child of any vertex has branches overlapping the branches of any other unequal child of the same vertex.

Examples

			The a(1) = 1 through a(4) = 18 trees:
  (1)  (2)       (3)            (4)
       (11)      (12)           (13)
       ((1)(1))  (111)          (22)
                 ((1)(2))       (112)
                 ((1)(1)(1))    (1111)
                 ((1)((1)(1)))  ((1)(3))
                                ((2)(2))
                                ((2)(11))
                                ((11)(11))
                                ((1)(1)(2))
                                ((1)((1)(2)))
                                ((2)((1)(1)))
                                ((1)(1)(1)(1))
                                ((11)((1)(1)))
                                ((1)((1)(1)(1)))
                                ((1)(1)((1)(1)))
                                (((1)(1))((1)(1)))
                                ((1)((1)((1)(1))))
		

Crossrefs

The case where all leaves are singletons is A316696.
The case where all leaves are (1) is A316697.
The non-locally disjoint version is A319312.
The case with all atoms equal to 1 is A331679.
The identity tree case is A331686.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    mpti[m_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[mpti/@p]],disjointQ],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Sum[Length[mpti[m]],{m,Sort/@IntegerPartitions[n]}],{n,8}]

A330625 Number of series-reduced rooted trees whose leaves are sets (not necessarily disjoint) with multiset union a strongly normal multiset of size n.

Original entry on oeis.org

1, 1, 3, 14, 123, 1330, 19694
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2019

Keywords

Comments

A rooted tree is series-reduced if it has no unary branchings, so every non-leaf node covers at least two other nodes.
A finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.

Examples

			The a(1) = 1 through a(3) = 14 trees:
  {1}  {1,2}      {1,2,3}
       {{1},{1}}  {{1},{1,2}}
       {{1},{2}}  {{1},{2,3}}
                  {{2},{1,3}}
                  {{3},{1,2}}
                  {{1},{1},{1}}
                  {{1},{1},{2}}
                  {{1},{2},{3}}
                  {{1},{{1},{1}}}
                  {{1},{{1},{2}}}
                  {{1},{{2},{3}}}
                  {{2},{{1},{1}}}
                  {{2},{{1},{3}}}
                  {{3},{{1},{2}}}
		

Crossrefs

The generalization where the leaves are multisets is A330467.
The singleton-reduced case is A330628.
The unlabeled version is A330624.
The case with all atoms distinct is A005804.
The case with all atoms equal is A196545.
The case where all leaves are singletons is A330471.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    srtrees[m_]:=Prepend[Join@@Table[Tuples[srtrees/@p],{p,Select[mps[m],Length[#1]>1&]}],m];
    Table[Sum[Length[Select[srtrees[s],FreeQ[#,{_,x_Integer,x_Integer,_}]&]],{s,strnorm[n]}],{n,0,5}]

A320174 Number of series-reduced rooted trees whose leaves are constant integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 3, 6, 19, 55, 200, 713, 2740, 10651, 42637, 173012, 713280, 2972389, 12514188, 53119400, 227140464, 977382586, 4229274235, 18391269922, 80330516578, 352269725526, 1550357247476, 6845517553493, 30316222112019, 134626183784975, 599341552234773, 2674393679352974
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.

Examples

			The a(1) = 1 through a(4) = 19 trees:
  (1)  (2)       (3)            (4)
       (11)      (111)          (22)
       ((1)(1))  ((1)(2))       (1111)
                 ((1)(11))      ((1)(3))
                 ((1)(1)(1))    ((2)(2))
                 ((1)((1)(1)))  ((2)(11))
                                ((1)(111))
                                ((11)(11))
                                ((1)(1)(2))
                                ((1)(1)(11))
                                ((1)((1)(2)))
                                ((2)((1)(1)))
                                ((1)((1)(11)))
                                ((1)(1)(1)(1))
                                ((11)((1)(1)))
                                ((1)((1)(1)(1)))
                                ((1)(1)((1)(1)))
                                (((1)(1))((1)(1)))
                                ((1)((1)((1)(1))))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    dot[m_]:=If[SameQ@@m,Prepend[#,m],#]&[Join@@Table[Union[Sort/@Tuples[dot/@p]],{p,Select[mps[m],Length[#]>1&]}]];
    Table[Length[Join@@Table[dot[m],{m,IntegerPartitions[n]}]],{n,10}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=vector(n)); for(n=1, n, v[n]=numdiv(n) + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, Oct 25 2018

A320175 Number of series-reduced rooted trees whose leaves are strict integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 2, 5, 13, 37, 120, 395, 1381, 4931, 18074, 67287, 254387, 972559, 3756315, 14629237, 57395490, 226613217, 899773355, 3590349661, 14390323014, 57907783039, 233867667197, 947601928915, 3851054528838, 15693587686823, 64114744713845, 262543966114921, 1077406218930902
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.

Examples

			The a(1) = 1 through a(4) = 13 trees:
  (1)  (2)       (3)            (4)
       ((1)(1))  (21)           (31)
                 ((1)(2))       ((1)(3))
                 ((1)(1)(1))    ((2)(2))
                 ((1)((1)(1)))  ((1)(21))
                                ((1)(1)(2))
                                ((1)((1)(2)))
                                ((2)((1)(1)))
                                ((1)(1)(1)(1))
                                ((1)((1)(1)(1)))
                                ((1)(1)((1)(1)))
                                (((1)(1))((1)(1)))
                                ((1)((1)((1)(1))))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    sot[m_]:=If[UnsameQ@@m,Prepend[#,m],#]&[Join@@Table[Union[Sort/@Tuples[sot/@p]],{p,Select[mps[m],Length[#]>1&]}]];
    Table[Length[Join@@Table[sot[m],{m,IntegerPartitions[n]}]],{n,10}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(p=prod(k=1, n, 1 + x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, Oct 25 2018

A320171 Number of series-reduced rooted identity trees whose leaves are integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 2, 5, 11, 29, 82, 247, 782, 2579, 8702, 29975, 104818, 371111, 1327307, 4788687, 17404838, 63669763, 234237605, 866090021, 3216738344, 11995470691, 44894977263, 168582174353, 634939697164, 2398004674911, 9079614633247, 34458722286825, 131059771522401
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.
In an identity tree, all branches directly under any given node are different.

Examples

			The a(1) = 1 through a(4) = 11 rooted identity trees:
  (1)  (2)   (3)        (4)
       (11)  (21)       (22)
             (111)      (31)
             ((1)(2))   (211)
             ((1)(11))  (1111)
                        ((1)(3))
                        ((1)(21))
                        ((2)(11))
                        ((1)(111))
                        ((1)((1)(2)))
                        ((1)((1)(11)))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gig[m_]:=Prepend[Join@@Table[Union[Sort/@Select[Sort/@Tuples[gig/@mtn],UnsameQ@@#&]],{mtn,Select[mps[m],Length[#]>1&]}],m];
    Table[Sum[Length[gig[y]],{y,IntegerPartitions[n]}],{n,8}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=vector(n)); for(n=1, n, v[n]=numbpart(n) + WeighT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(12) and beyond from Andrew Howroyd, Oct 25 2018

A320177 Number of series-reduced rooted identity trees whose leaves are strict integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 1, 3, 5, 11, 26, 65, 169, 463, 1294, 3691, 10700, 31417, 93175, 278805, 840424, 2549895, 7780472, 23860359, 73500838, 227330605, 705669634, 2197750615, 6865335389, 21505105039, 67533738479, 212575923471, 670572120240, 2119568530289, 6712115439347
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.
In an identity tree, all branches directly under any given node are different.

Examples

			The a(1) = 1 through a(5) = 11 rooted trees:
  (1)  (2)  (3)       (4)            (5)
            (21)      (31)           (32)
            ((1)(2))  ((1)(3))       (41)
                      ((1)(12))      ((1)(4))
                      ((1)((1)(2)))  ((2)(3))
                                     ((1)(13))
                                     ((2)(12))
                                     ((1)((1)(3)))
                                     ((2)((1)(2)))
                                     ((1)((1)(12)))
                                     ((1)((1)((1)(2))))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gog[m_]:=If[UnsameQ@@m,Prepend[#,m],#]&[Join@@Table[Select[Union[Sort/@Tuples[gog/@p]],UnsameQ@@#&],{p,Select[mps[m],Length[#]>1&]}]];
    Table[Length[Join@@Table[gog[m],{m,IntegerPartitions[n]}]],{n,10}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(p=prod(k=1, n, 1 + x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) + WeighT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(13) and beyond from Andrew Howroyd, Oct 25 2018

A320178 Number of series-reduced rooted identity trees whose leaves are constant integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 2, 4, 8, 19, 53, 151, 459, 1445, 4634, 15154, 50253, 168607, 571212, 1951588, 6715575, 23255444, 80978697, 283373024, 995995996, 3514614634, 12446666967, 44222390525, 157587392768, 563096832839, 2017121728223, 7242436444030, 26059512879605, 93952946906117
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.
In an identity tree, all branches directly under any given node are different.

Examples

			The a(1) = 1 through a(5) = 19 rooted trees:
  (1)  (2)   (3)        (4)             (5)
       (11)  (111)      (22)            (11111)
             ((1)(2))   (1111)          ((1)(4))
             ((1)(11))  ((1)(3))        ((2)(3))
                        ((2)(11))       ((1)(22))
                        ((1)(111))      ((3)(11))
                        ((1)((1)(2)))   ((2)(111))
                        ((1)((1)(11)))  ((1)(1111))
                                        ((11)(111))
                                        ((1)(2)(11))
                                        ((1)((1)(3)))
                                        ((2)((1)(2)))
                                        ((11)((1)(2)))
                                        ((1)((2)(11)))
                                        ((2)((1)(11)))
                                        ((1)((1)(111)))
                                        ((11)((1)(11)))
                                        ((1)((1)((1)(2))))
                                        ((1)((1)((1)(11))))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gob[m_]:=If[SameQ@@m,Prepend[#,m],#]&[Join@@Table[Select[Union[Sort/@Tuples[gob/@p]],UnsameQ@@#&],{p,Select[mps[m],Length[#]>1&]}]];
    Table[Length[Join@@Table[gob[m],{m,IntegerPartitions[n]}]],{n,10}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=vector(n)); for(n=1, n, v[n]=numdiv(n) + WeighT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(13) and beyond from Andrew Howroyd, Oct 25 2018

A320289 Number of phylogenetic trees with n labels and no singleton leaves.

Original entry on oeis.org

0, 1, 1, 4, 11, 86, 477, 4810, 40679, 496522, 5662933, 81759910, 1169640551, 19622623190, 336215135973, 6455705990674, 128445712218263, 2785761076726066, 62980942321570981, 1525318051255683598, 38566041706375722071, 1032726237783455193662
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2018

Keywords

Examples

			The a(2) = 1 through a(5) = 11 phylogenetic trees:
  (12)  (123)  (1234)      (12345)
               ((12)(34))  ((12)(345))
               ((13)(24))  ((13)(245))
               ((14)(23))  ((14)(235))
                           ((15)(234))
                           ((23)(145))
                           ((24)(135))
                           ((25)(134))
                           ((34)(125))
                           ((35)(124))
                           ((45)(123))
		

Crossrefs

Programs

  • Mathematica
    numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
    rotf[n_]:=rotf[n]=If[n==1,0,1+Sum[numSetPtnsOfType[p]*Times@@rotf/@p,{p,Select[IntegerPartitions[n],Length[#]>1&]}]];
    Array[rotf,20]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n,k)={my(v=vector(n)); for(n=2, n, v[n]=binomial(n+k-1, n) + EulerT(v[1..n])[n]); v}
    seq(n)={my(M=Mat(vectorv(n, k, b(n,k)))); vector(n, k, sum(i=1, k, binomial(k, i)*(-1)^(k-i)*M[i,k]))} \\ Andrew Howroyd, Oct 26 2018

A331684 Number of locally disjoint enriched identity p-trees of weight n.

Original entry on oeis.org

1, 1, 2, 3, 6, 14, 30, 68, 157, 379, 901, 2229, 5488, 13846, 34801, 89368, 228186, 592943, 1533511, 4026833
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2020

Keywords

Comments

A locally disjoint enriched identity p-tree of weight n is either the number n itself or a finite sequence of distinct non-overlapping locally disjoint enriched identity p-trees whose weights are weakly decreasing and sum to n.

Examples

			The a(1) = 1 through a(6) = 14 enriched p-trees:
  1  2  3     4        5           6
        (21)  (31)     (32)        (42)
              ((21)1)  (41)        (51)
                       ((21)2)     (321)
                       ((31)1)     ((21)3)
                       (((21)1)1)  ((31)2)
                                   ((32)1)
                                   (3(21))
                                   ((41)1)
                                   ((21)21)
                                   (((21)1)2)
                                   (((21)2)1)
                                   (((31)1)1)
                                   ((((21)1)1)1)
		

Crossrefs

The orderless version is A316694.
The non-identity version is A331687.
Identity trees are A004111.
P-trees are A196545.
Enriched p-trees are A289501.
Locally disjoint identity trees are A316471.
Enriched identity p-trees are A331875, with locally disjoint case A331687.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    ldeip[n_]:=Prepend[Select[Join@@Table[Tuples[ldeip/@p],{p,Rest[IntegerPartitions[n]]}],UnsameQ@@#&&disjointQ[DeleteCases[#,_Integer]]&],n];
    Table[Length[ldeip[n]],{n,12}]
Previous Showing 21-30 of 36 results. Next