A302796
Squarefree numbers whose prime indices are relatively prime. Nonprime Heinz numbers of strict integer partitions with relatively prime parts.
Original entry on oeis.org
1, 2, 6, 10, 14, 15, 22, 26, 30, 33, 34, 35, 38, 42, 46, 51, 55, 58, 62, 66, 69, 70, 74, 77, 78, 82, 85, 86, 93, 94, 95, 102, 105, 106, 110, 114, 118, 119, 122, 123, 130, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 161, 165, 166, 170, 174, 177, 178, 182
Offset: 1
Sequence of terms together with their sets of prime indices begins:
01 : {}
02 : {1}
06 : {1,2}
10 : {1,3}
14 : {1,4}
15 : {2,3}
22 : {1,5}
26 : {1,6}
30 : {1,2,3}
33 : {2,5}
34 : {1,7}
35 : {3,4}
38 : {1,8}
42 : {1,2,4}
46 : {1,9}
51 : {2,7}
55 : {3,5}
58 : {1,10}
62 : {1,11}
66 : {1,2,5}
Cf.
A001222,
A003963,
A005117,
A007359,
A051424,
A056239,
A275024,
A289509,
A302242,
A302505,
A302696,
A302697,
A302698,
A302797,
A302798.
-
Select[Range[100],Or[#===1,SquareFreeQ[#]&&GCD@@PrimePi/@FactorInteger[#][[All,1]]===1]&]
-
isok(n) = {if (n == 1, return (1)); if (issquarefree(n), my(f = factor(n)); return (gcd(vector(#f~, k, primepi(f[k,1]))) == 1););} \\ Michel Marcus, Apr 13 2018
A330098
Number of distinct multisets of multisets that can be obtained by permuting the vertices of the multiset of multisets with MM-number n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1
The vertex-permutations of {{1,2},{2,3,3}} are:
{{1,2},{1,3,3}}
{{1,2},{2,3,3}}
{{1,3},{1,2,2}}
{{1,3},{2,2,3}}
{{2,3},{1,1,2}}
{{2,3},{1,1,3}}
so a(4927) = 6.
Cf.
A001055,
A003238,
A007716,
A055621,
A056239,
A112798,
A302242,
A303975,
A322847,
A330194,
A330218,
A330223,
A330227,
A330236.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
Table[Length[graprms[primeMS/@primeMS[n]]],{n,100}]
A330944
Number of nonprime prime indices of n.
Original entry on oeis.org
0, 1, 0, 2, 0, 1, 1, 3, 0, 1, 0, 2, 1, 2, 0, 4, 0, 1, 1, 2, 1, 1, 1, 3, 0, 2, 0, 3, 1, 1, 0, 5, 0, 1, 1, 2, 1, 2, 1, 3, 0, 2, 1, 2, 0, 2, 1, 4, 2, 1, 0, 3, 1, 1, 0, 4, 1, 2, 0, 2, 1, 1, 1, 6, 1, 1, 0, 2, 1, 2, 1, 3, 1, 2, 0, 3, 1, 2, 1, 4, 0, 1, 0, 3, 0, 2, 1
Offset: 1
24 has prime indices {1,1,1,2}, of which {1,1,1} are nonprime, so a(24) = 3.
The number of prime prime indices is given by
A257994.
Primes of nonprime index are
A007821.
Products of primes of prime index are
A076610.
Products of primes of nonprime index are
A320628.
Numbers whose prime indices are not all prime are
A330945.
Cf.
A000040,
A000720,
A001222,
A007097,
A018252,
A056239,
A112798,
A302242,
A320629,
A320633,
A330946,
A330947.
-
Table[Total[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}/;!PrimeQ[PrimePi[p]]:>k]],{n,30}]
-
a(n) = my(f=factor(n)); sum(k=1, #f~, if(!isprime(primepi(f[k,1])), f[k,2], 0)); \\ Daniel Suteu, Jan 14 2020
A304713
Squarefree numbers whose prime indices are pairwise indivisible. Heinz numbers of strict integer partitions with pairwise indivisible parts.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 83, 85, 89, 91, 93, 95, 97, 101, 103, 107, 109, 113, 119, 123, 127, 131, 137, 139, 141, 143, 145, 149, 151, 155, 157, 161, 163, 165, 167, 173
Offset: 1
Sequence of entries together with their corresponding multiset multisystems (see A302242) begins:
1: {}
2: {{}}
3: {{1}}
5: {{2}}
7: {{1,1}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
19: {{1,1,1}}
23: {{2,2}}
29: {{1,3}}
31: {{5}}
33: {{1},{3}}
35: {{2},{1,1}}
Cf.
A000009,
A005117,
A006126,
A056239,
A073576,
A285572,
A285573,
A293606,
A293993,
A302696,
A302796,
A303362,
A303365,
A304711.
-
Select[Range[300],SquareFreeQ[#]&&Select[Tuples[PrimePi/@First/@FactorInteger[#],2],UnsameQ@@#&&Divisible@@#&]==={}&]
A320324
Numbers of which each prime index has the same number of prime factors, counted with multiplicity.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 32, 33, 37, 41, 43, 45, 47, 49, 51, 53, 55, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 85, 89, 91, 93, 97, 99, 101, 103, 107, 109, 113, 121, 123, 125, 127, 128, 131, 135, 137, 139, 149, 151, 153
Offset: 1
The terms together with their corresponding multiset multisystems (A302242):
1: {}
2: {{}}
3: {{1}}
4: {{},{}}
5: {{2}}
7: {{1,1}}
8: {{},{},{}}
9: {{1},{1}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
16: {{},{},{},{}}
17: {{4}}
19: {{1,1,1}}
23: {{2,2}}
25: {{2},{2}}
27: {{1},{1},{1}}
29: {{1,3}}
31: {{5}}
32: {{},{},{},{},{}}
33: {{1},{3}}
37: {{1,1,2}}
41: {{6}}
43: {{1,4}}
45: {{1},{1},{2}}
47: {{2,3}}
49: {{1,1},{1,1}}
Cf.
A001222,
A038041,
A112798,
A302242,
A306017,
A317583,
A319066,
A319169,
A320325,
A322794,
A326533,
A326534,
A326535,
A326536,
A326537.
-
Select[Range[100],SameQ@@PrimeOmega/@PrimePi/@First/@FactorInteger[#]&]
-
is(n) = #Set(apply(p -> bigomega(primepi(p)), factor(n)[,1]~))<=1 \\ Rémy Sigrist, Oct 11 2018
A302243
Total weight of the n-th twice-odd-factored multiset partition.
Original entry on oeis.org
0, 1, 1, 2, 2, 1, 2, 2, 1, 3, 3, 2, 2, 3, 2, 1, 2, 3, 3, 3, 1, 2, 3, 2, 4, 2, 4, 2, 4, 1, 3, 4, 3, 1, 3, 3, 2, 3, 3, 2, 4, 1, 2, 3, 4, 4, 2, 4, 2, 3, 2, 3, 4, 3, 1, 4, 3, 3, 4, 3, 2, 2, 3, 1, 3, 5, 5, 4, 2, 2, 3, 3, 3, 5, 2, 4, 3, 2, 1, 5, 4, 2, 3, 2, 4, 5, 4, 4
Offset: 0
Sequence of multiset partitions begins: (), ((1)), ((2)), ((11)), ((1)(1)), ((3)), ((12)), ((1)(2)), ((4)), ((111)), ((1)(11)), ((22)), ((2)(2)), ((1)(1)(1)), ((13)), ((5)), ((1)(3)), ((2)(11)), ((112)), ((1)(12)), ((6)).
Cf.
A003963,
A007716,
A034691,
A048673,
A056239,
A061775,
A063834 A064216,
A096443,
A249620,
A255397,
A255906,
A275024,
A279789,
A281113,
A299757,
A302242.
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[Sum[PrimeOmega[k],{k,primeMS[2n-1]}],{n,100}]
A320629
Products of odd primes of nonprime index.
Original entry on oeis.org
1, 7, 13, 19, 23, 29, 37, 43, 47, 49, 53, 61, 71, 73, 79, 89, 91, 97, 101, 103, 107, 113, 131, 133, 137, 139, 149, 151, 161, 163, 167, 169, 173, 181, 193, 197, 199, 203, 223, 227, 229, 233, 239, 247, 251, 257, 259, 263, 269, 271, 281, 293, 299, 301, 307, 311
Offset: 1
The sequence of terms begins:
1 = 1
7 = prime(4)
13 = prime(6)
19 = prime(8)
23 = prime(9)
29 = prime(10)
37 = prime(12)
43 = prime(14)
47 = prime(15)
49 = prime(4)^2
53 = prime(16)
61 = prime(18)
71 = prime(20)
73 = prime(21)
79 = prime(22)
89 = prime(24)
91 = prime(4)*prime(6)
97 = prime(25)
101 = prime(26)
103 = prime(27)
107 = prime(28)
113 = prime(30)
131 = prime(32)
133 = prime(4)*prime(8)
137 = prime(33)
139 = prime(34)
149 = prime(35)
151 = prime(36)
161 = prime(4)*prime(9)
Cf.
A000040,
A006450,
A007821,
A018252,
A056239,
A076610,
A112798,
A302242,
A320533,
A320628,
A320630,
A320631,
A320633.
A330945
Numbers whose prime indices are not all prime numbers.
Original entry on oeis.org
2, 4, 6, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 84, 86, 87
Offset: 1
The sequence of terms together with their prime indices of prime indices begins:
2: {{}}
4: {{},{}}
6: {{},{1}}
7: {{1,1}}
8: {{},{},{}}
10: {{},{2}}
12: {{},{},{1}}
13: {{1,2}}
14: {{},{1,1}}
16: {{},{},{},{}}
18: {{},{1},{1}}
19: {{1,1,1}}
20: {{},{},{2}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
24: {{},{},{},{1}}
26: {{},{1,2}}
28: {{},{},{1,1}}
29: {{1,3}}
Complement of
A076610 (products of primes of prime index).
Numbers n such that
A330944(n) > 0.
The restriction to odd terms is
A330946.
The restriction to nonprimes is
A330948.
The number of prime prime indices is given by
A257994.
The number of nonprime prime indices is given by
A330944.
Primes of nonprime index are
A007821.
Products of primes of nonprime index are
A320628.
The set S of numbers whose prime indices do not all belong to S is
A324694.
Cf.
A000040,
A000720,
A001222,
A018252,
A056239,
A112798,
A302242,
A320633,
A330943,
A330947,
A330949.
A326535
MM-numbers of multiset partitions where each part has a different sum.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109
Offset: 1
The sequence of multiset partitions where each part has a different sum, preceded by their MM-numbers, begins:
1: {}
2: {{}}
3: {{1}}
5: {{2}}
6: {{},{1}}
7: {{1,1}}
10: {{},{2}}
11: {{3}}
13: {{1,2}}
14: {{},{1,1}}
15: {{1},{2}}
17: {{4}}
19: {{1,1,1}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
26: {{},{1,2}}
29: {{1,3}}
30: {{},{1},{2}}
31: {{5}}
Cf.
A038041,
A112798,
A275780,
A302242,
A320324,
A321469,
A326519,
A326533,
A326534,
A326536,
A326537.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],UnsameQ@@Total/@primeMS/@primeMS[#]&]
A303837
Number of z-trees with least common multiple n > 1.
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 4, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 10, 1, 1, 2, 1, 1, 4, 1, 2, 1, 4, 1, 6, 1, 1, 2, 2, 1, 4, 1, 4, 1, 1, 1, 10, 1, 1, 1
Offset: 1
The a(72) = 6 z-trees together with the corresponding multiset systems (see A112798, A302242) are the following.
(72): {{1,1,1,2,2}}
(8,18): {{1,1,1},{1,2,2}}
(8,36): {{1,1,1},{1,1,2,2}}
(9,24): {{2,2},{1,1,1,2}}
(6,8,9): {{1,2},{1,1,1},{2,2}}
(8,9,12): {{1,1,1},{2,2},{1,1,2}}
The a(60) = 10 z-trees together with the corresponding multiset systems are the following.
(60): {{1,1,2,3}}
(4,30): {{1,1},{1,2,3}}
(6,20): {{1,2},{1,1,3}}
(10,12): {{1,3},{1,1,2}}
(12,15): {{1,1,2},{2,3}}
(12,20): {{1,1,2},{1,1,3}}
(15,20): {{2,3},{1,1,3}}
(4,6,10): {{1,1},{1,2},{1,3}}
(4,6,15): {{1,1},{1,2},{2,3}}
(4,10,15): {{1,1},{1,3},{2,3}}
Cf.
A006126,
A030019,
A048143,
A076078,
A112798,
A275307,
A285572,
A286518,
A286520,
A293993,
A293994,
A302242,
A303838,
A304118.
-
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
Table[Length[Select[Rest[Subsets[Rest[Divisors[n]]]],And[zensity[#]==-1,zsm[#]=={n},Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,2,50}]
Comments