cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 63 results. Next

A324770 Number of fully anti-transitive rooted identity trees with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 13, 27, 58, 128, 286, 640, 1452, 3308, 7594, 17512, 40591, 94449, 220672
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is fully anti-transitive if no proper terminal subtree of any branch of the root is a branch of the root. It is an identity tree if there are no repeated branches directly under the same root.

Examples

			The a(1) = 1 through a(7) = 6 fully anti-transitive rooted identity trees:
  o  (o)  ((o))  (((o)))  ((o(o)))   (((o(o))))   ((o(o(o))))
                          ((((o))))  ((o((o))))   ((((o(o)))))
                                     (((((o)))))  (((o)((o))))
                                                  (((o((o)))))
                                                  ((o(((o)))))
                                                  ((((((o))))))
		

Crossrefs

Programs

  • Mathematica
    idall[n_]:=If[n==1,{{}},Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&]];
    Table[Length[Select[idall[n],Intersection[Union@@Rest[FixedPointList[Union@@#&,#]],#]=={}&]],{n,10}]

A324739 Number of subsets of {2...n} containing no element whose prime indices all belong to the subset.

Original entry on oeis.org

1, 2, 3, 6, 10, 20, 30, 60, 96, 192, 312, 624, 936, 1872, 3744, 7488, 12480, 24960, 37440, 74880, 142848, 285696, 456192, 912384, 1548288, 3096576, 5308416, 10616832, 15925248, 31850496, 51978240, 103956480, 200835072, 401670144, 771489792, 1542979584, 2314469376
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(1) = 1 through a(6) = 20 subsets:
  {}  {}   {}   {}     {}       {}
      {2}  {2}  {2}    {2}      {2}
           {3}  {3}    {3}      {3}
                {4}    {4}      {4}
                {2,4}  {5}      {5}
                {3,4}  {2,4}    {6}
                       {2,5}    {2,4}
                       {3,4}    {2,5}
                       {4,5}    {2,6}
                       {2,4,5}  {3,4}
                                {3,6}
                                {4,5}
                                {4,6}
                                {5,6}
                                {2,4,5}
                                {2,4,6}
                                {2,5,6}
                                {3,4,6}
                                {4,5,6}
                                {2,4,5,6}
		

Crossrefs

The maximal case is A324762. The case of subsets of {1...n} is A324738. The strict integer partition version is A324750. The integer partition version is A324755. The Heinz number version is A324760. An infinite version is A324694.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[2,n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,10}]
  • PARI
    pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
    a(n)={my(p=vector(n,k,pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
    ((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(bitnegimply(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 16 2019

A324771 Numbers divisible by at least one of their prime indices > 1.

Original entry on oeis.org

6, 12, 15, 18, 24, 28, 30, 36, 42, 45, 48, 54, 55, 56, 60, 66, 72, 75, 78, 84, 90, 96, 102, 105, 108, 110, 112, 114, 119, 120, 126, 132, 135, 138, 140, 144, 150, 152, 156, 162, 165, 168, 174, 180, 186, 192, 195, 196, 198, 204, 207, 210, 216, 220, 222, 224, 225
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of terms together with their prime indices begins:
   6: {1,2}
  12: {1,1,2}
  15: {2,3}
  18: {1,2,2}
  24: {1,1,1,2}
  28: {1,1,4}
  30: {1,2,3}
  36: {1,1,2,2}
  42: {1,2,4}
  45: {2,2,3}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  55: {3,5}
  56: {1,1,1,4}
  60: {1,1,2,3}
  66: {1,2,5}
  72: {1,1,1,2,2}
  75: {2,3,3}
  78: {1,2,6}
  84: {1,1,2,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or@@Cases[If[#==1,{},FactorInteger[#]],{p_?(#>2&),_}:>Divisible[#,PrimePi[p]]]&]

A324769 Matula-Goebel numbers of fully anti-transitive rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 64, 65, 67, 71, 73, 77, 79, 81, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 129, 131, 133, 137, 139, 143, 147
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is fully anti-transitive if no proper terminal subtree of any branch of the root is a branch of the root.

Examples

			The sequence of fully anti-transitive rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  11: ((((o))))
  13: ((o(o)))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  21: ((o)(oo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  29: ((o((o))))
  31: (((((o)))))
  32: (ooooo)
  35: (((o))(oo))
  37: ((oo(o)))
  41: (((o(o))))
  43: ((o(oo)))
  47: (((o)((o))))
  49: ((oo)(oo))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fullantiQ[n_]:=Intersection[Union@@Rest[FixedPointList[Union@@primeMS/@#&,primeMS[n]]],primeMS[n]]=={};
    Select[Range[100],fullantiQ]

A324839 Number of unlabeled rooted identity trees with n nodes where the branches of no branch of the root form a subset of the branches of the root.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 8, 16, 35, 74, 166, 367, 831, 1878, 4299, 9857, 22775, 52777, 122957, 287337
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

An unlabeled rooted tree is an identity tree if there are no repeated branches directly under the same root.
Also the number of finitary sets with n brackets where no element is also a subset. For example, the a(7) = 8 sets are (o = {}):
{{{{{{o}}}}}}
{{{{o,{o}}}}}
{{{o,{{o}}}}}
{{o,{{{o}}}}}
{{o,{o,{o}}}}
{{{o},{{o}}}}
{{o},{{{o}}}}
{{o},{o,{o}}}

Examples

			The a(1) = 1 through a(8) = 16 rooted identity trees:
  o  ((o))  (((o)))  ((o(o)))   (((o(o))))   ((o)(o(o)))    (((o))(o(o)))
                     ((((o))))  ((o((o))))   ((o(o(o))))    (((o)(o(o))))
                                (((((o)))))  ((((o(o)))))   (((o(o(o)))))
                                             (((o)((o))))   ((o)((o(o))))
                                             (((o((o)))))   ((o)(o((o))))
                                             ((o)(((o))))   ((o((o(o)))))
                                             ((o(((o)))))   ((o(o)((o))))
                                             ((((((o))))))  ((o(o((o)))))
                                                            (((((o(o))))))
                                                            ((((o)((o)))))
                                                            ((((o((o))))))
                                                            (((o)(((o)))))
                                                            (((o(((o))))))
                                                            ((o)((((o)))))
                                                            ((o((((o))))))
                                                            (((((((o)))))))
		

Crossrefs

Programs

  • Mathematica
    idall[n_]:=If[n==1,{{}},Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&]];
    Table[Length[Select[idall[n],And@@Table[!SubsetQ[#,b],{b,#}]&]],{n,10}]

A324854 Lexicographically earliest sequence containing 1 and all positive integers > 2 whose prime indices already belong to the sequence.

Original entry on oeis.org

1, 4, 7, 8, 14, 16, 17, 19, 28, 32, 34, 38, 43, 49, 53, 56, 59, 64, 67, 68, 76, 86, 98, 106, 107, 112, 118, 119, 128, 131, 133, 134, 136, 139, 152, 163, 172, 191, 196, 212, 214, 224, 227, 236, 238, 241, 256, 262, 263, 266, 268, 272, 277, 278, 289, 301, 304
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiplicative semigroup: if x and y are in the sequence then so is x*y. - Robert Israel, Mar 19 2019

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   4: {1,1}
   7: {4}
   8: {1,1,1}
  14: {1,4}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  28: {1,1,4}
  32: {1,1,1,1,1}
  34: {1,7}
  38: {1,8}
  43: {14}
  49: {4,4}
  53: {16}
  56: {1,1,1,4}
  59: {17}
  64: {1,1,1,1,1,1}
  67: {19}
  68: {1,1,7}
		

Crossrefs

Programs

  • Maple
    S:= {1}:
    for n from 3 to 400 do
      if map(numtheory:-pi, numtheory:-factorset(n)) subset S then
        S:= S union {n}
      fi
    od:
    sort(convert(S,list)); # Robert Israel, Mar 19 2019
  • Mathematica
    aQ[n_]:=Switch[n,1,True,2,False,,And@@Cases[FactorInteger[n],{p,k_}:>aQ[PrimePi[p]]]];
    Select[Range[100],aQ]

A324752 Number of strict integer partitions of n not containing 1 or any prime indices of the parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 3, 1, 4, 4, 4, 5, 6, 7, 10, 9, 12, 12, 16, 17, 22, 22, 26, 31, 35, 37, 46, 50, 55, 66, 70, 82, 90, 101, 114, 127, 143, 159, 172, 202, 215, 246, 267, 301, 327, 366, 402, 447, 491, 545, 600, 655, 722, 795, 875, 964, 1050, 1152, 1259, 1383
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(2) = 1 through a(17) = 12 strict integer partitions (A...H = 10...17):
  2  3  4  5  6   7   8  9   A   B    C   D    E    F    G    H
              42  43     54  64  65   75  76   86   87   97   98
                  52     63  73  83   84  85   95   96   A6   A7
                         72  82  542  93  94   A4   A5   C4   B6
                                      A2  B2   B3   B4   D3   C5
                                          643  752  C3   E2   D4
                                               842  D2   763  E3
                                                    654  943  854
                                                    843  A42  863
                                                    852       872
                                                              A52
                                                              B42
An example for n = 60 is (19,14,13,7,5,2), with prime indices:
  19: {8}
  14: {1,4}
  13: {6}
   7: {4}
   5: {3}
   2: {1}
None of these prime indices {1,3,4,6,8} belong to the partition, as required.
		

Crossrefs

The subset version is A324742, with maximal case is A324763. The non-strict version is A324757. The Heinz number version is A324761. An infinite version is A304360.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}]

A324757 Number of integer partitions of n not containing 1 or any prime indices of the parts.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 4, 3, 4, 6, 9, 7, 14, 12, 19, 21, 28, 29, 41, 45, 56, 64, 81, 89, 114, 125, 154, 176, 211, 236, 288, 324, 383, 432, 514, 578, 678, 766, 891, 1006, 1176, 1306, 1525, 1711, 1966, 2212, 2538, 2839, 3258, 3646, 4150, 4647, 5288, 5891, 6698, 7472
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(2) = 1 through a(10) = 9 integer partitions:
  (2)  (3)  (4)   (5)  (6)    (7)   (8)     (9)    (A)
            (22)       (33)   (43)  (44)    (54)   (55)
                       (42)   (52)  (422)   (63)   (64)
                       (222)        (2222)  (72)   (73)
                                            (333)  (82)
                                            (522)  (433)
                                                   (442)
                                                   (4222)
                                                   (22222)
		

Crossrefs

The subset version is A324742, with maximal case A324763. The strict case is A324752. The Heinz number version is A324761. An infinite version is A324695.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}]

A324761 Heinz numbers of integer partitions not containing 1 or any prime indices of the parts.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 65, 67, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 113, 115, 121, 123, 125, 127, 129, 131, 133, 137, 139, 143, 147, 149
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  33: {2,5}
  35: {3,4}
  37: {12}
  41: {13}
  43: {14}
		

Crossrefs

The subset version is A324742, with maximal case A324763. The strict integer partition version is A324752. The integer partition version is A324757. An infinite version is A324695.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1,100,2],Intersection[primeMS[#],Union@@primeMS/@primeMS[#]]=={}&]

A324841 Matula-Goebel numbers of fully recursively anti-transitive rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 21, 23, 25, 27, 31, 32, 35, 49, 51, 53, 57, 59, 63, 64, 67, 73, 77, 81, 83, 85, 95, 97, 103, 115, 121, 125, 127, 128, 131, 133, 147, 149, 153, 159, 161, 171, 175, 177, 187, 189, 201, 209, 217, 227, 233, 241, 243, 245
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is fully recursively anti-transitive if no proper terminal subtree of any terminal subtree is a branch of the larger subtree.

Examples

			The sequence of fully recursively anti-transitive rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  11: ((((o))))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  21: ((o)(oo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  31: (((((o)))))
  32: (ooooo)
  35: (((o))(oo))
  49: ((oo)(oo))
  51: ((o)((oo)))
  53: ((oooo))
  57: ((o)(ooo))
  59: ((((oo))))
  63: ((o)(o)(oo))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fratQ[n_]:=And[Intersection[Union@@Rest[FixedPointList[Union@@primeMS/@#&,primeMS[n]]],primeMS[n]]=={},And@@fratQ/@primeMS[n]];
    Select[Range[100],fratQ]
Previous Showing 51-60 of 63 results. Next