cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 69 results. Next

A328513 Connected squarefree numbers.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 37, 39, 41, 43, 47, 53, 57, 59, 61, 65, 67, 71, 73, 79, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 127, 129, 131, 133, 137, 139, 149, 151, 157, 159, 163, 167, 173, 179, 181, 183, 185, 191, 193, 195
Offset: 1

Views

Author

Gus Wiseman, Oct 20 2019

Keywords

Comments

First differs from A318718 and A318719 in having 195 = prime(2) * prime(3) * prime(6).
A squarefree number with prime factorization prime(m_1) * ... * prime(m_k) is connected if the simple labeled graph with vertex set {m_1,...,m_k} and edges between any two vertices with a common divisor greater than 1 is connected. Connected numbers are listed in A305078.

Examples

			The sequence of all connected sets of multisets together with their MM-numbers (A302242) begins:
   1: {}
   2: {{}}
   3: {{1}}
   5: {{2}}
   7: {{1,1}}
  11: {{3}}
  13: {{1,2}}
  17: {{4}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  23: {{2,2}}
  29: {{1,3}}
  31: {{5}}
  37: {{1,1,2}}
  39: {{1},{1,2}}
  41: {{6}}
  43: {{1,4}}
  47: {{2,3}}
  53: {{1,1,1,1}}
  57: {{1},{1,1,1}}
		

Crossrefs

A subset of A005117.
These are Heinz numbers of the partitions counted by A304714.
The maximum connected squarefree divisor of n is A327398(n).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Select[Range[100],SquareFreeQ[#]&&Length[zsm[primeMS[#]]]<=1&]

Formula

Intersection of A005117 and A305078.

A371446 Number of carry-connected integer partitions whose distinct parts have no binary containments.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 2, 5, 4, 4, 4, 8, 4, 7, 7, 12, 10, 14, 12, 15, 19, 19, 21, 32, 27, 33, 40, 46, 47, 61, 52, 75, 89, 95, 104, 129, 129, 149, 176, 188, 208, 249, 257, 296, 341, 373, 394, 476, 496, 552
Offset: 0

Views

Author

Gus Wiseman, Apr 02 2024

Keywords

Comments

These partitions are ranked by A371445.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A binary carry of two positive integers is an overlap of binary indices. An integer partition is binary carry-connected iff the graph with one vertex for each part and edges corresponding to binary carries is connected.
A binary containment is a containment of binary indices. For example, the numbers {3,5} have binary indices {{1,2},{1,3}}, so there is a binary carry but not a binary containment.

Examples

			The a(12) = 8 through a(14) = 7 partitions:
  (12)             (13)                         (14)
  (6,6)            (10,3)                       (7,7)
  (9,3)            (5,5,3)                      (9,5)
  (4,4,4)          (1,1,1,1,1,1,1,1,1,1,1,1,1)  (6,5,3)
  (6,3,3)                                       (5,3,3,3)
  (3,3,3,3)                                     (2,2,2,2,2,2,2)
  (2,2,2,2,2,2)                                 (1,1,1,1,1,1,1,1,1,1,1,1,1,1)
  (1,1,1,1,1,1,1,1,1,1,1,1)
		

Crossrefs

The first condition (carry-connected) is A325098.
The second condition (stable) is A325109.
Ranks for binary indices of binary indices are A326750 = A326704 /\ A326749.
Ranks for prime indices of prime indices are A329559 = A305078 /\ A316476.
Ranks for prime indices of binary indices are A371294 = A087086 /\ A371291.
Ranks for binary indices of prime indices are A371445 = A325118 /\ A371455.
A001187 counts connected graphs.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A070939 gives length of binary expansion.
A326964 counts connected set-systems, covering A323818.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n], stableQ[bix/@Union[#],SubsetQ]&&Length[csm[bix/@#]]<=1&]],{n,0,30}]

A305081 Heinz numbers of z-trees. Heinz numbers of connected integer partitions with pairwise indivisible parts and z-density -1.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 91, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 203, 211, 223, 227, 229
Offset: 1

Views

Author

Gus Wiseman, May 25 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.
The clutter density of a multiset S of positive integers is Sum_{s in S} (omega(s) - 1) - omega(lcm(S)) where omega = A001221.

Examples

			4331 is the Heinz number of {18,20}, which is a z-tree corresponding to the multiset multisystem {{1,2,2},{1,1,3}}.
17927 is the Heinz number of {4,6,45}, which is a z-tree corresponding to the multiset multisystem {{1,1},{1,2},{2,2,3}}.
27391 is the Heinz number of {4,4,6,14}, which is a z-tree corresponding to the multiset multisystem {{1,1},{1,1},{1,2},{1,4}}.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zens[n_]:=If[n==1,0,Total@Cases[FactorInteger[n],{p_,k_}:>k*(PrimeNu[PrimePi[p]]-1)]-PrimeNu[LCM@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]]]];
    Select[Range[300],And[zens[#]==-1,Length[zsm[primeMS[#]]]==1,Select[Tuples[primeMS[#],2],UnsameQ@@#&&Divisible@@#&]=={}]&]

A305253 Number of connected factorizations of n into factors greater than 1 whose distinct factors are pairwise indivisible.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, May 28 2018

Keywords

Comments

Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. This sequence counts factorizations S whose distinct factors are pairwise indivisible and such that G(S) is a connected graph.

Examples

			The a(360) = 8 factorizations: (360), (4*90), (10*36), (12*30), (15*24), (18*20), (4*6*15), (6*6*10).
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sacs[n_]:=Select[facs[n],Function[f,Length[zsm[f]]==1&&Select[Tuples[Union[f],2],UnsameQ@@#&&Divisible@@#&]=={}]]
    Table[Length[sacs[n]],{n,500}]
  • PARI
    is_connected(facs) = { my(siz=length(facs)); if(1==siz,1,my(m=matrix(siz,siz,i,j,(gcd(facs[i],facs[j])!=1))^siz); for(n=1,siz,if(0==vecmin(m[n,]),return(0))); (1)); };
    A305253aux(n, m, facs) = if(1==n, is_connected(Vec(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m)&&factorback(apply(x -> (x==d)||(x%d),Vec(facs))), newfacs = List(facs); listput(newfacs,d); s += A305253aux(n/d, d, newfacs))); (s));
    A305253(n) = if(1==n,0,A305253aux(n, n, List([]))); \\ Antti Karttunen, Dec 06 2018

Formula

a(n) <= A305193(n) <= A001055(n). - Antti Karttunen, Dec 06 2018

Extensions

Definition clarified by Gus Wiseman, more terms from Antti Karttunen, Dec 06 2018

A329625 Smallest BII-number of a connected set-system with n edges.

Original entry on oeis.org

0, 1, 5, 7, 23, 31, 63, 127, 383, 511, 1023, 2047, 4095, 8191
Offset: 0

Views

Author

Gus Wiseman, Nov 28 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of terms together with their corresponding set-systems begins:
     0: {}
     1: {{1}}
     5: {{1},{1,2}}
     7: {{1},{2},{1,2}}
    23: {{1},{2},{1,2},{1,3}}
    31: {{1},{2},{1,2},{3},{1,3}}
    63: {{1},{2},{1,2},{3},{1,3},{2,3}}
   127: {{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3}}
   383: {{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3},{1,4}}
   511: {{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3},{4},{1,4}}
		

Crossrefs

The smallest BII-number of a set-system with n edges is A000225(n).
The smallest BII-number of a set-system with n vertices is A072639(n).
BII-numbers of connected set-systems are A326749.
MM-numbers of connected set-systems are A328514.
The case of clutters is A329627.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    First/@GatherBy[Select[Range[0,1000],Length[csm[bpe/@bpe[#]]]<=1&],Length[bpe[#]]&]

A305054 If n = Product_i prime(x_i)^k_i, then a(n) = Sum_i k_i * omega(x_i), where omega = A001221 is number of distinct prime factors.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 1, 0, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 1, 3, 2, 1, 2, 2, 1, 2, 2, 1, 3, 0, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 3, 1, 2, 3, 2, 1, 4, 1, 1, 2, 2, 2, 3
Offset: 1

Views

Author

Gus Wiseman, May 24 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,0,Total@Cases[FactorInteger[n],{p_,k_}:>k*PrimeNu[PrimePi[p]]]],{n,100}]
  • PARI
    a(n) = {my(f=factor(n)); sum(k=1, #f~, f[k,2]*omega(primepi(f[k,1])));} \\ Michel Marcus, Jun 09 2018

Formula

Totally additive with a(prime(n)) = omega(n).
a(n) = A305053(n) + A001221(n). - Michel Marcus, Jun 09 2018

A305501 Number of connected components of the integer partition y + 1 where y is the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 3, 1, 1, 1, 1, 1, 3, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A partition y is said to be connected if G(U(y + 1)) is a connected graph, where U(y + 1) is the set of distinct successors of the parts of y.
This is intended to be a cleaner form of A305079, where the treatment of empty multisets is arbitrary.

Examples

			The "prime index plus 1" multiset of 7410 is {2,3,4,7,9}, with connected components {{2,4},{3,9},{7}}, so a(7410) = 3.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[zsm[primeMS[n]+1]],{n,100}]
  • PARI
    zero_first_elem_and_connected_elems(ys) = { my(cs = List([ys[1]]), i=1); ys[1] = 0; while(i<=#cs, for(j=2,#ys,if(ys[j]&&(1!=gcd(cs[i],ys[j])), listput(cs,ys[j]); ys[j] = 0)); i++); (ys); };
    A305501(n) = { my(cs = apply(p -> 1+primepi(p),factor(n)[,1]~), s=0); while(#cs, cs = select(c -> c, zero_first_elem_and_connected_elems(cs)); s++); (s); }; \\ Antti Karttunen, Nov 09 2018

Extensions

More terms from Antti Karttunen, Nov 09 2018

A305831 Number of connected components of the strict integer partition with FDH number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.

Examples

			Let f = A050376. The FD-factorization of 1683 is 9*11*17 = f(6)*f(7)*f(10). The connected components of {6,7,10} are {{7},{6,10}}, so a(1683) = 2.
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    nn=200;FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Table[Length[zsm[FDfactor[n]/.FDrules]],{n,nn}]

A305832 Number of connected components of the n-th FDH set-system.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 2, 1, 1, 2, 1, 3, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. The n-th FDH set-system is obtained by repeating this factorization on each index s_i.

Examples

			Let f = A050376. The FD-factorization of 765 is 5*9*17 or f(4)*f(6)*f(10) = f(4)*f(2*3)*f(2*5) with connected components {{{4}},{{2,3},{2,5}}}, so a(765) = 2.
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>1]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    nn=100;FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Table[Length[csm[FDfactor[#]/.FDrules&/@(FDfactor[n]/.FDrules)]],{n,nn}]

A322367 Number of disconnected or empty integer partitions of n.

Original entry on oeis.org

1, 0, 1, 2, 3, 6, 7, 14, 17, 27, 34, 54, 63, 98, 118, 165, 207, 287, 345, 474, 574, 757, 931, 1212, 1463, 1890, 2292, 2898, 3515, 4413, 5303
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1).

Examples

			The a(3) = 2 through a(9) = 27 disconnected integer partitions:
  (21)   (31)    (32)     (51)      (43)       (53)        (54)
  (111)  (211)   (41)     (321)     (52)       (71)        (72)
         (1111)  (221)    (411)     (61)       (332)       (81)
                 (311)    (2211)    (322)      (431)       (432)
                 (2111)   (3111)    (331)      (521)       (441)
                 (11111)  (21111)   (421)      (611)       (522)
                          (111111)  (511)      (3221)      (531)
                                    (2221)     (3311)      (621)
                                    (3211)     (4211)      (711)
                                    (4111)     (5111)      (3222)
                                    (22111)    (22211)     (3321)
                                    (31111)    (32111)     (4221)
                                    (211111)   (41111)     (4311)
                                    (1111111)  (221111)    (5211)
                                               (311111)    (6111)
                                               (2111111)   (22221)
                                               (11111111)  (32211)
                                                           (33111)
                                                           (42111)
                                                           (51111)
                                                           (222111)
                                                           (321111)
                                                           (411111)
                                                           (2211111)
                                                           (3111111)
                                                           (21111111)
                                                           (111111111)
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],Length[zsm[#]]!=1&]],{n,20}]
Previous Showing 41-50 of 69 results. Next