cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 68 results. Next

A372587 Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is even.

Original entry on oeis.org

6, 7, 10, 11, 13, 14, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 49, 50, 52, 56, 57, 58, 62, 69, 70, 72, 74, 75, 76, 77, 82, 83, 85, 86, 87, 88, 90, 92, 96, 98, 100, 102, 103, 104, 106, 107, 108, 109, 112, 117, 120, 123
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The odd version is A372586.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
            {2,3}   6  (2,1)
          {1,2,3}   7  (4)
            {2,4}  10  (3,1)
          {1,2,4}  11  (5)
          {1,3,4}  13  (6)
          {2,3,4}  14  (4,1)
            {2,5}  18  (2,2,1)
          {1,2,5}  19  (8)
          {2,3,5}  22  (5,1)
        {1,2,3,5}  23  (9)
            {4,5}  24  (2,1,1,1)
          {1,4,5}  25  (3,3)
          {2,4,5}  26  (6,1)
        {1,2,4,5}  27  (2,2,2)
          {3,4,5}  28  (4,1,1)
        {2,3,4,5}  30  (3,2,1)
      {1,2,3,4,5}  31  (11)
            {1,6}  33  (5,2)
            {2,6}  34  (7,1)
          {1,2,6}  35  (4,3)
          {1,3,6}  37  (12)
          {2,3,6}  38  (8,1)
		

Crossrefs

Positions of even terms in A372428, zeros A372427.
For minimum (A372437) we have A372440, complement A372439.
For length (A372441, zeros A071814) we have A372591, complement A372590.
For maximum (A372442, zeros A372436) we have A372589, complement A372588.
The complement is A372586.
For just binary indices:
- length: A001969, complement A000069
- sum: A158704, complement A158705
- minimum: A036554, complement A003159
- maximum: A053754, complement A053738
For just prime indices:
- length: A026424 A028260 (count A027187), complement (count A027193)
- sum: A300061 (count A058696), complement A300063 (count A058695)
- minimum: A340933 (count A026805), complement A340932 (count A026804)
- maximum: A244990 (count A027187), complement A244991 (count A027193)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],EvenQ[Total[bix[#]]+Total[prix[#]]]&]

Formula

Numbers k such that A029931(k) + A056239(k) is even.

A317589 Heinz numbers of uniformly normal integer partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 23, 25, 27, 29, 30, 31, 32, 36, 37, 41, 43, 47, 49, 53, 59, 60, 61, 64, 67, 71, 73, 79, 81, 83, 89, 90, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 150, 151, 157, 163, 167, 169
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is uniformly normal if either (1) it is of the form (x, x, ..., x) for some x > 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a uniformly normal integer partition.

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    uninrmQ[q_]:=Or[q=={}||Length[Union[q]]==1,And[Union[q]==Range[Max[q]],uninrmQ[Sort[Length/@Split[q],Greater]]]];
    Select[Range[1000],uninrmQ[primeMS[#]]&]

A363526 Number of integer partitions of n with reverse-weighted sum 3*n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 4, 3, 2, 4, 4, 4, 5, 5, 4, 7, 7, 5, 8, 7, 6, 11, 9, 8, 11, 10, 10, 13, 12, 11, 15, 15, 12, 17, 16, 14, 20, 18, 16, 22, 20, 19, 24, 22, 20, 27, 26, 23, 29, 27, 25, 33, 30, 28, 35, 33, 31, 38, 36, 33, 41, 40
Offset: 0

Views

Author

Gus Wiseman, Jun 10 2023

Keywords

Comments

Are the partitions counted all of length 4 or 5?
The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. The reverse-weighted sum is the weighted sum of the reverse, also the sum of partial sums. For example, the weighted sum of (4,2,2,1) is 1*4 + 2*2 + 3*2 + 4*1 = 18 and the reverse-weighted sum is 4*4 + 3*2 + 2*2 + 1*1 = 27.

Examples

			The partition (6,4,4,1) has sum 15 and reverse-weighted sum 45 so is counted under a(15).
The a(n) partitions for n = {5, 10, 15, 16, 21, 24}:
  (1,1,1,1,1)  (4,3,2,1)    (6,4,4,1)    (6,5,4,1)  (8,6,6,1)   (9,7,7,1)
               (2,2,2,2,2)  (6,5,2,2)    (6,6,2,2)  (8,7,4,2)   (9,8,5,2)
                            (7,3,3,2)    (7,4,3,2)  (9,5,5,2)   (9,9,3,3)
                            (3,3,3,3,3)             (9,6,3,3)   (10,6,6,2)
                                                    (10,4,4,3)  (10,7,4,3)
                                                                (11,5,5,3)
                                                                (12,4,4,4)
		

Crossrefs

Positions of terms with omega > 4 appear to be A079998.
The version for compositions is A231429.
The non-reverse version is A363527.
These partitions have ranks A363530, reverse A363531.
A000041 counts integer partitions, strict A000009.
A053632 counts compositions by weighted sum, rank statistic A029931/A359042.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, row-sums of A359361.
A318283 gives weighted sum of reversed prime indices, row-sums of A358136.
A320387 counts multisets by weighted sum, zero-based A359678.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Total[Accumulate[#]]==3n&]],{n,0,30}]

A359362 a(n) = (A001222(n) + 1) * A056239(n), where A001222 counts prime indices and A056239 adds them up.

Original entry on oeis.org

0, 2, 4, 6, 6, 9, 8, 12, 12, 12, 10, 16, 12, 15, 15, 20, 14, 20, 16, 20, 18, 18, 18, 25, 18, 21, 24, 24, 20, 24, 22, 30, 21, 24, 21, 30, 24, 27, 24, 30, 26, 28, 28, 28, 28, 30, 30, 36, 24, 28, 27, 32, 32, 35, 24, 35, 30, 33, 34, 35, 36, 36, 32, 42, 27, 32, 38
Offset: 1

Views

Author

Gus Wiseman, Dec 31 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

A055396 gives minimum prime index, maximum A061395.
A112798 list prime indices, length A001222, sum A056239.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[(PrimeOmega[n]+1)*Total[primeMS[n]],{n,30}]
  • Python
    from sympy import primepi, factorint
    def A359362(n): return (sum((f:=factorint(n)).values())+1)*sum(primepi(p)*e for p, e in f.items()) # Chai Wah Wu, Jan 01 2023

Formula

a(n) = (k + 1) * m, where m and k are the sum and length of the integer partition with Heinz number n.
a(n) = 2*A304818(n) - A261079(n).

A363527 Number of integer partitions of n with weighted sum 3*n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 3, 4, 4, 6, 8, 7, 10, 13, 13, 21, 25, 24, 37, 39, 40, 58, 63, 72, 94, 106, 118, 144, 165, 181, 224, 256, 277, 341, 387, 417, 504, 560, 615, 743, 818, 899, 1066, 1171, 1285, 1502, 1655, 1819, 2108, 2315, 2547, 2915
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2023

Keywords

Comments

Are the partitions counted all of length > 4?
The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. The reverse-weighted sum is the weighted sum of the reverse, also the sum of partial sums. For example, the weighted sum of (4,2,2,1) is 1*4 + 2*2 + 3*2 + 4*1 = 18 and the reverse-weighted sum is 4*4 + 3*2 + 2*2 + 1*1 = 27.

Examples

			The partition (2,2,1,1,1,1) has sum 8 and weighted sum 24 so is counted under a(8).
The a(13) = 1 through a(18) = 8 partitions:
  (332221)  (333221)    (33333)     (442222)    (443222)    (443331)
            (4322111)   (522222)    (5322211)   (4433111)   (444222)
            (71111111)  (4332111)   (55111111)  (5332211)   (533322)
                        (63111111)  (63211111)  (55211111)  (4443111)
                                                (63311111)  (7222221)
                                                (72221111)  (55311111)
                                                            (64221111)
                                                            (A11111111)
		

Crossrefs

The version for compositions is A231429.
The reverse version is A363526.
These partitions have ranks A363531.
A000041 counts integer partitions, strict A000009.
A053632 counts compositions by weighted sum, rank statistic A029931/A359042.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, row-sums of A359361.
A318283 gives weighted sum of reversed prime indices, row-sums of A358136.
A320387 counts multisets by weighted sum, zero-based A359678.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Total[Accumulate[Reverse[#]]]==3n&]],{n,0,30}]

A372430 Positive integers k such that the distinct prime indices of k are a subset of the binary indices of k.

Original entry on oeis.org

1, 3, 5, 15, 27, 39, 55, 63, 85, 121, 125, 135, 169, 171, 175, 209, 243, 247, 255, 299, 375, 399, 437, 459, 507, 539, 605, 637, 725, 735, 783, 841, 867, 891, 1085, 1215, 1323, 1331, 1375, 1519, 1767, 1815, 1863, 2079, 2125, 2187, 2223, 2295, 2299, 2331, 2405
Offset: 1

Views

Author

Gus Wiseman, May 02 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Conjecture: The only number whose binary indices are a subset of its prime indices is 4100, with binary indices {3,13} and prime indices {1,1,3,3,13}. Verified up to 10,000,000.

Examples

			The prime indices of 135 are {2,2,2,3}, and the binary indices are {1,2,3,8}. Since {2,3} is a subset of {1,2,3,8}, 135 is in the sequence.
The terms together with their prime indices begin:
     1: {}
     3: {2}
     5: {3}
    15: {2,3}
    27: {2,2,2}
    39: {2,6}
    55: {3,5}
    63: {2,2,4}
    85: {3,7}
   121: {5,5}
   125: {3,3,3}
The terms together with their binary expansions and binary indices begin:
     1:              1 ~ {1}
     3:             11 ~ {1,2}
     5:            101 ~ {1,3}
    15:           1111 ~ {1,2,3,4}
    27:          11011 ~ {1,2,4,5}
    39:         100111 ~ {1,2,3,6}
    55:         110111 ~ {1,2,3,5,6}
    63:         111111 ~ {1,2,3,4,5,6}
    85:        1010101 ~ {1,3,5,7}
   121:        1111001 ~ {1,4,5,6,7}
   125:        1111101 ~ {1,3,4,5,6,7}
		

Crossrefs

The version for equal lengths is A071814, zeros of A372441.
The version for equal sums is A372427, zeros of A372428.
For disjoint instead of subset we have A372431, complement A372432.
The version for equal maxima is A372436, zeros of A372442.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[1000],SubsetQ[bix[#],prix[#]]&]

Formula

Row k of A304038 is a subset of row k of A048793.

A305564 Number of finite sets of relatively prime positive integers with least common multiple n.

Original entry on oeis.org

1, 1, 1, 2, 1, 7, 1, 4, 2, 7, 1, 32, 1, 7, 7, 8, 1, 32, 1, 32, 7, 7, 1, 136, 2, 7, 4, 32, 1, 193, 1, 16, 7, 7, 7, 322, 1, 7, 7, 136, 1, 193, 1, 32, 32, 7, 1, 560, 2, 32, 7, 32, 1, 136, 7, 136, 7, 7, 1, 3464, 1, 7, 32, 32, 7, 193, 1, 32, 7, 193, 1, 2852, 1, 7
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2018

Keywords

Examples

			The a(6) = 7 sets are {1,6}, {2,3}, {1,2,3}, {1,2,6}, {1,3,6}, {2,3,6}, {1,2,3,6}.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Rest[Subsets[Divisors[n]]],And[GCD@@#==1,LCM@@#==n]&]],{n,100}]

A305565 Regular triangle where T(n,k) is the number of finite sets of positive integers with least common multiple n and greatest common divisor k.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 0, 1, 7, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 4, 2, 0, 1, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 1, 7, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 32, 7, 2, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2018

Keywords

Examples

			The T(12,2) = 7 sets are {2,12}, {4,6}, {2,4,6}, {2,4,12}, {2,6,12}, {4,6,12}, {2,4,6,12}.
Triangle begins:
   1
   1  1
   1  0  1
   2  1  0  1
   1  0  0  0  1
   7  1  1  0  0  1
   1  0  0  0  0  0  1
   4  2  0  1  0  0  0  1
   2  0  1  0  0  0  0  0  1
   7  1  0  0  1  0  0  0  0  1
   1  0  0  0  0  0  0  0  0  0  1
  32  7  2  1  0  1  0  0  0  0  0  1
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Divisors[n]],And[GCD@@#==k,LCM@@#==n]&]],{n,20},{k,n}]

Formula

If k divides n then T(n,k) = T(n/k,1) = A305564(n/k); otherwise T(n,k) = 0.

A305731 Number of irreducible integer partitions of n.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 4, 0, 6, 3, 12, 0, 21, 1, 30, 19, 43, 10, 82, 20, 103, 68, 152, 58, 236, 102, 301, 196, 413, 205, 653, 310, 788, 580, 1115, 718, 1649, 1006, 2149, 1714, 3018, 2247, 4502, 3389, 6036, 5509, 8647, 7601, 12678, 11310, 17541
Offset: 0

Views

Author

Gus Wiseman, Jun 22 2018

Keywords

Comments

A multiset m whose distinct elements are m_1, m_2, ..., m_k with multiplicities y_1, y_2, ..., y_k is irreducible if m is of size > 1 and either gcd(m_1, ..., m_k) > 1 or the multiset {y_1, ..., y_k} is irreducible.

Examples

			The a(6) = 4 irreducible partitions are (42), (33), (222), (2211).
		

Crossrefs

Programs

  • Mathematica
    ptnredQ[y_]:=Or[Length[y]==1,And[GCD@@y==1,ptnredQ[Sort[Length/@Split[y],Greater]]]];
    Table[Length[Select[IntegerPartitions[n],!ptnredQ[#]&]],{n,20}]

A317590 Heinz numbers of integer partitions that are not uniformly normal.

Original entry on oeis.org

10, 14, 15, 20, 21, 22, 24, 26, 28, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is uniformly normal if either (1) it is of the form (x, x, ..., x) for some x > 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a uniformly normal integer partition.

Examples

			Sequence of all non-uniformly normal integer partitions begins: (31), (41), (32), (311), (42), (51), (2111), (61), (411), (52), (71), (43), (81), (62), (3111), (421), (511), (322), (91), (21111), (331).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    uninrmQ[q_]:=Or[q=={}||Length[Union[q]]==1,And[Union[q]==Range[Max[q]],uninrmQ[Sort[Length/@Split[q],Greater]]]];
    Select[Range[1000],!uninrmQ[primeMS[#]]&]
Previous Showing 51-60 of 68 results. Next