cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A326880 BII-numbers of set-systems that are closed under nonempty intersection.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 38, 39, 40, 41, 42, 43, 46, 47, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The enumeration of these set-systems by number of covered vertices is A326881.

Examples

			Most small numbers are in the sequence, but the sequence of non-terms together with the set-systems with those BII-numbers begins:
  20: {{1,2},{1,3}}
  22: {{2},{1,2},{1,3}}
  28: {{1,2},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  36: {{1,2},{2,3}}
  37: {{1},{1,2},{2,3}}
  44: {{1,2},{3},{2,3}}
  45: {{1},{1,2},{3},{2,3}}
  48: {{1,3},{2,3}}
  49: {{1},{1,3},{2,3}}
  50: {{2},{1,3},{2,3}}
  51: {{1},{2},{1,3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
  53: {{1},{1,2},{1,3},{2,3}}
  54: {{2},{1,2},{1,3},{2,3}}
  55: {{1},{2},{1,2},{1,3},{2,3}}
  60: {{1,2},{3},{1,3},{2,3}}
  61: {{1},{1,2},{3},{1,3},{2,3}}
  62: {{2},{1,2},{3},{1,3},{2,3}}
  84: {{1,2},{1,3},{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],SubsetQ[bpe/@bpe[#],Intersection@@@Select[Tuples[bpe/@bpe[#],2],Intersection@@#!={}&]]&]
  • Python
    from itertools import count, islice, combinations
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen():
        for n in count(0):
            E,f = [bin_i(k) for k in bin_i(n)],0
            for i in combinations(E,2):
                x = list(set(i[0])&set(i[1]))
                if x not in E and len(x) > 0:
                    f += 1
                    break
            if f < 1:
                yield n
    A326880_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Mar 07 2025

A326881 Number of set-systems with {} that are closed under intersection and cover n vertices.

Original entry on oeis.org

1, 1, 5, 71, 4223, 2725521, 151914530499, 28175294344381108057
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2019

Keywords

Examples

			The a(2) = 5 set-systems:
  {{},{1,2}}
  {{},{1},{2}}
  {{},{1},{1,2}}
  {{},{2},{1,2}}
  {{},{1},{2},{1,2}}
		

Crossrefs

The case also closed under union is A000798.
The connected case (i.e., with maximum) is A102894.
The same for union instead of intersection is (also) A102894.
The non-covering case is A102895.
The BII-numbers of these set-systems (without the empty set) are A326880.
The unlabeled case is A326883.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&Union@@#==Range[n]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

Formula

Inverse binomial transform of A102895. - Andrew Howroyd, Aug 10 2019

Extensions

a(5)-a(7) from Andrew Howroyd, Aug 10 2019

A367772 Number of sets of nonempty subsets of {1..n} satisfying a strict version of the axiom of choice in more than one way.

Original entry on oeis.org

0, 0, 1, 23, 1105, 154941, 66072394, 88945612865, 396990456067403
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(3) = 23 set-systems:
  {{1,2}}
  {{1,2,3}}
  {{1},{2,3}}
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{1,2,3}}
  {{1},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
		

Crossrefs

For at least one choice we have A367902.
For no choices we have A367903, no singletons A367769, ranks A367907.
For a unique choice we have A367904, ranks A367908.
These set-systems have ranks A367909.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Select[Tuples[#], UnsameQ@@#&]]>1&]], {n,0,3}]

Formula

A367903(n) + A367904(n) + a(n) = A058891(n).

Extensions

a(5)-a(8) from Christian Sievers, Jul 26 2024

A326906 Number of sets of subsets of {1..n} that are closed under union and cover all n vertices.

Original entry on oeis.org

2, 2, 8, 90, 4542, 2747402, 151930948472, 28175295407840207894
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2019

Keywords

Comments

Differs from A102895 in having a(0) = 2 instead of 1.

Examples

			The a(0) = 2 through a(2) = 8 sets of subsets:
  {}    {{1}}     {{1,2}}
  {{}}  {{},{1}}  {{},{1,2}}
                  {{1},{1,2}}
                  {{2},{1,2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

The case without empty sets is A102894.
The case with a single covering edge is A102895.
Binomial transform is A102897.
The case also closed under intersection is A326878 for n > 0.
The same for intersection instead of union is (also) A326906.
The unlabeled version is A326907.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&SubsetQ[#,Union@@@Tuples[#,2]]&]],{n,0,3}]

Formula

a(n) = 2 * A102894(n).

A326883 Number of unlabeled set-systems with {} that are closed under intersection and cover n vertices.

Original entry on oeis.org

1, 1, 4, 22, 302, 28630, 216533404, 5592325966377736
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2019

Keywords

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 22 set-systems:
  {{}}  {{}{1}}  {{}{12}}        {{}{123}}
                 {{}{1}{2}}      {{}{1}{23}}
                 {{}{2}{12}}     {{}{3}{123}}
                 {{}{1}{2}{12}}  {{}{1}{2}{3}}
                                 {{}{23}{123}}
                                 {{}{1}{3}{23}}
                                 {{}{2}{3}{123}}
                                 {{}{3}{13}{23}}
                                 {{}{1}{23}{123}}
                                 {{}{3}{23}{123}}
                                 {{}{1}{2}{3}{23}}
                                 {{}{1}{2}{3}{123}}
                                 {{}{2}{3}{13}{23}}
                                 {{}{1}{3}{23}{123}}
                                 {{}{2}{3}{23}{123}}
                                 {{}{3}{13}{23}{123}}
                                 {{}{1}{2}{3}{13}{23}}
                                 {{}{1}{2}{3}{23}{123}}
                                 {{}{2}{3}{13}{23}{123}}
                                 {{}{1}{2}{3}{12}{13}{23}}
                                 {{}{1}{2}{3}{13}{23}{123}}
                                 {{}{1}{2}{3}{12}{13}{23}{123}}
		

Crossrefs

The case also closed under union is A001930.
The connected case (i.e., with maximum) is A108798.
The same for union instead of intersection is (also) A108798.
The non-covering case is A108800.
The labeled case is A326881.

Formula

a(n) = A108800(n) - A108800(n-1) for n > 0. - Andrew Howroyd, Aug 10 2019

Extensions

a(5)-a(7) from Andrew Howroyd, Aug 10 2019

A326868 Number of connected connectedness systems on n vertices.

Original entry on oeis.org

1, 1, 4, 64, 6048, 8064000, 1196002238976
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

We define a connectedness system (investigated by Vim van Dam in 2002) to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges. It is connected if it is empty or contains an edge with all the vertices.

Examples

			The a(3) = 64 connected connectedness systems:
  {{123}}              {{1}{123}}
  {{12}{123}}          {{2}{123}}
  {{13}{123}}          {{3}{123}}
  {{23}{123}}          {{1}{12}{123}}
  {{12}{13}{123}}      {{1}{13}{123}}
  {{12}{23}{123}}      {{1}{23}{123}}
  {{13}{23}{123}}      {{2}{12}{123}}
  {{12}{13}{23}{123}}  {{2}{13}{123}}
                       {{2}{23}{123}}
                       {{3}{12}{123}}
                       {{3}{13}{123}}
                       {{3}{23}{123}}
                       {{1}{12}{13}{123}}
                       {{1}{12}{23}{123}}
                       {{1}{13}{23}{123}}
                       {{2}{12}{13}{123}}
                       {{2}{12}{23}{123}}
                       {{2}{13}{23}{123}}
                       {{3}{12}{13}{123}}
                       {{3}{12}{23}{123}}
                       {{3}{13}{23}{123}}
                       {{1}{12}{13}{23}{123}}
                       {{2}{12}{13}{23}{123}}
                       {{3}{12}{13}{23}{123}}
.
  {{1}{2}{123}}              {{1}{2}{3}{123}}
  {{1}{3}{123}}              {{1}{2}{3}{12}{123}}
  {{2}{3}{123}}              {{1}{2}{3}{13}{123}}
  {{1}{2}{12}{123}}          {{1}{2}{3}{23}{123}}
  {{1}{2}{13}{123}}          {{1}{2}{3}{12}{13}{123}}
  {{1}{2}{23}{123}}          {{1}{2}{3}{12}{23}{123}}
  {{1}{3}{12}{123}}          {{1}{2}{3}{13}{23}{123}}
  {{1}{3}{13}{123}}          {{1}{2}{3}{12}{13}{23}{123}}
  {{1}{3}{23}{123}}
  {{2}{3}{12}{123}}
  {{2}{3}{13}{123}}
  {{2}{3}{23}{123}}
  {{1}{2}{12}{13}{123}}
  {{1}{2}{12}{23}{123}}
  {{1}{2}{13}{23}{123}}
  {{1}{3}{12}{13}{123}}
  {{1}{3}{12}{23}{123}}
  {{1}{3}{13}{23}{123}}
  {{2}{3}{12}{13}{123}}
  {{2}{3}{12}{23}{123}}
  {{2}{3}{13}{23}{123}}
  {{1}{2}{12}{13}{23}{123}}
  {{1}{3}{12}{13}{23}{123}}
  {{2}{3}{12}{13}{23}{123}}
		

Crossrefs

The case without singletons is A072447.
The not necessarily connected case is A326866.
The unlabeled case is A326869.
The BII-numbers of these set-systems are A326879.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],n==0||MemberQ[#,Range[n]]&&SubsetQ[#,Union@@@Select[Tuples[#,2],Intersection@@#!={}&]]&]],{n,0,4}]

Formula

a(n > 1) = 2^n * A072447(n).
Logarithmic transform of A326870.

Extensions

a(6) corrected by Christian Sievers, Oct 28 2023

A326898 Number of unlabeled topologies with up to n points.

Original entry on oeis.org

1, 2, 5, 14, 47, 186, 904, 5439, 41418, 404501, 5122188, 84623842, 1828876351, 51701216248, 1908493827243, 91755916071736, 5729050033597431
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2019

Keywords

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 14 topologies:
  {}  {}     {}            {}
      {}{1}  {}{1}         {}{1}
             {}{12}        {}{12}
             {}{2}{12}     {}{123}
             {}{1}{2}{12}  {}{2}{12}
                           {}{3}{123}
                           {}{23}{123}
                           {}{1}{2}{12}
                           {}{1}{23}{123}
                           {}{3}{23}{123}
                           {}{2}{3}{23}{123}
                           {}{3}{13}{23}{123}
                           {}{2}{3}{13}{23}{123}
                           {}{1}{2}{3}{12}{13}{23}{123}
		

Crossrefs

Partial sums of A001930.
The labeled version is A326878.

A326900 Number of set-systems on n vertices that are closed under union and intersection.

Original entry on oeis.org

1, 2, 6, 29, 232, 3032, 62837, 2009408, 97034882, 6952703663, 728107141058, 109978369078580, 23682049666957359, 7195441649260733390, 3056891748255795885338, 1801430622263459795017565, 1462231768717868324127642932, 1624751185398704445629757084188, 2457871026957756859612862822442301
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets, so no two edges of such a set-system can be disjoint.

Examples

			The a(0) = 1 through a(3) = 29 set-systems:
  {}  {}     {}           {}
      {{1}}  {{1}}        {{1}}
             {{2}}        {{2}}
             {{1,2}}      {{3}}
             {{1},{1,2}}  {{1,2}}
             {{2},{1,2}}  {{1,3}}
                          {{2,3}}
                          {{1,2,3}}
                          {{1},{1,2}}
                          {{1},{1,3}}
                          {{2},{1,2}}
                          {{2},{2,3}}
                          {{3},{1,3}}
                          {{3},{2,3}}
                          {{1},{1,2,3}}
                          {{2},{1,2,3}}
                          {{3},{1,2,3}}
                          {{1,2},{1,2,3}}
                          {{1,3},{1,2,3}}
                          {{2,3},{1,2,3}}
                          {{1},{1,2},{1,2,3}}
                          {{1},{1,3},{1,2,3}}
                          {{2},{1,2},{1,2,3}}
                          {{2},{2,3},{1,2,3}}
                          {{3},{1,3},{1,2,3}}
                          {{3},{2,3},{1,2,3}}
                          {{1},{1,2},{1,3},{1,2,3}}
                          {{2},{1,2},{2,3},{1,2,3}}
                          {{3},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Binomial transform of A006058 (the covering case).
The case closed under union only is A102896.
The case with {} allowed is A306445.
The BII-numbers of these set-systems are A326876.
The case closed under intersection only is A326901.
The unlabeled version is A326908.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,3}]
    (* Second program: *)
    A006058 = Cases[Import["https://oeis.org/A006058/b006058.txt", "Table"], {, }][[All, 2]];
    a[n_] := Sum[Binomial[n, k] A006058[[k + 1]], {k, 0, n}];
    a /@ Range[0, 18] (* Jean-François Alcover, Jan 01 2020 *)

Extensions

a(16)-a(18) from A006058 by Jean-François Alcover, Jan 01 2020

A326908 Number of non-isomorphic sets of subsets of {1..n} that are closed under union and intersection.

Original entry on oeis.org

2, 4, 9, 23, 70, 256, 1160, 6599, 48017, 452518, 5574706, 90198548, 1919074899, 53620291147, 1962114118390, 93718030190126, 5822768063787557
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2019

Keywords

Examples

			Non-isomorphic representatives of the a(0) = 2 through a(3) = 23 sets of subsets:
  {}    {}       {}              {}
  {{}}  {{}}     {{}}            {{}}
        {{1}}    {{1}}           {{1}}
        {{}{1}}  {{12}}          {{12}}
                 {{}{1}}         {{}{1}}
                 {{}{12}}        {{123}}
                 {{2}{12}}       {{}{12}}
                 {{}{2}{12}}     {{}{123}}
                 {{}{1}{2}{12}}  {{2}{12}}
                                 {{3}{123}}
                                 {{}{2}{12}}
                                 {{23}{123}}
                                 {{}{3}{123}}
                                 {{}{23}{123}}
                                 {{}{1}{2}{12}}
                                 {{3}{23}{123}}
                                 {{}{1}{23}{123}}
                                 {{}{3}{23}{123}}
                                 {{3}{13}{23}{123}}
                                 {{}{2}{3}{23}{123}}
                                 {{}{3}{13}{23}{123}}
                                 {{}{2}{3}{13}{23}{123}}
                                 {{}{1}{2}{3}{12}{13}{23}{123}}
		

Crossrefs

The labeled version is A306445.
Taking first differences and prepending 1 gives A326898.
Taking second differences and prepending two 1's gives A001930.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],SubsetQ[#,Union@@@Tuples[#,2]]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

A327016 BII-numbers of finite T_0 topologies without their empty set.

Original entry on oeis.org

0, 1, 2, 5, 6, 7, 8, 17, 24, 25, 34, 40, 42, 69, 70, 71, 81, 85, 87, 88, 89, 93, 98, 102, 103, 104, 106, 110, 120, 121, 122, 127, 128, 257, 384, 385, 514, 640, 642, 1029, 1030, 1031, 1281, 1285, 1287, 1408, 1409, 1413, 1538, 1542, 1543, 1664, 1666, 1670, 1920
Offset: 1

Views

Author

Gus Wiseman, Aug 14 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all finite T_0 topologies without their empty set together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
  17: {{1},{1,3}}
  24: {{3},{1,3}}
  25: {{1},{3},{1,3}}
  34: {{2},{2,3}}
  40: {{3},{2,3}}
  42: {{2},{3},{2,3}}
  69: {{1},{1,2},{1,2,3}}
  70: {{2},{1,2},{1,2,3}}
  71: {{1},{2},{1,2},{1,2,3}}
  81: {{1},{1,3},{1,2,3}}
  85: {{1},{1,2},{1,3},{1,2,3}}
  87: {{1},{2},{1,2},{1,3},{1,2,3}}
  88: {{3},{1,3},{1,2,3}}
		

Crossrefs

T_0 topologies are A001035, with unlabeled version A000112.
BII-numbers of topologies without their empty set are A326876.
BII-numbers of T_0 set-systems are A326947.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,1000],UnsameQ@@dual[bpe/@bpe[#]]&&SubsetQ[bpe/@bpe[#],Union[Union@@@Tuples[bpe/@bpe[#],2],DeleteCases[Intersection@@@Tuples[bpe/@bpe[#],2],{}]]]&]
Previous Showing 21-30 of 31 results. Next