A326366
Number of intersecting antichains of nonempty subsets of {1..n} with empty intersection (meaning there is no vertex in common to all the edges).
Original entry on oeis.org
1, 1, 1, 2, 28, 1960, 1379273, 229755337549, 423295079757497714059
Offset: 0
The a(0) = 1 through a(4) = 28 intersecting antichains with empty intersection:
{} {} {} {} {}
{{12}{13}{23}} {{12}{13}{23}}
{{12}{14}{24}}
{{13}{14}{34}}
{{23}{24}{34}}
{{12}{13}{234}}
{{12}{14}{234}}
{{12}{23}{134}}
{{12}{24}{134}}
{{13}{14}{234}}
{{13}{23}{124}}
{{13}{34}{124}}
{{14}{24}{123}}
{{14}{34}{123}}
{{23}{24}{134}}
{{23}{34}{124}}
{{24}{34}{123}}
{{12}{134}{234}}
{{13}{124}{234}}
{{14}{123}{234}}
{{23}{124}{134}}
{{24}{123}{134}}
{{34}{123}{124}}
{{12}{13}{14}{234}}
{{12}{23}{24}{134}}
{{13}{23}{34}{124}}
{{14}{24}{34}{123}}
{{123}{124}{134}{234}}
The case with empty edges allowed is
A326375.
Intersecting antichains of nonempty sets are
A001206.
Intersecting set systems with empty intersection are
A326373.
Antichains of nonempty sets with empty intersection are
A006126 or
A307249.
The inverse binomial transform is the covering case
A326365.
Cf.
A007363,
A014466,
A051185,
A058891,
A305001,
A305843,
A305844,
A318128,
A318129,
A326361,
A326362,
A326363,
A326364.
-
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&],#=={}||Intersection@@#=={}&]],{n,0,4}]
A326571
Number of covering antichains of nonempty, non-singleton subsets of {1..n}, all having different sums.
Original entry on oeis.org
1, 0, 1, 5, 61, 2721, 788221
Offset: 0
The a(3) = 5 antichains:
{{1,2,3}}
{{1,3},{2,3}}
{{1,2},{2,3}}
{{1,2},{1,3}}
{{1,2},{1,3},{2,3}}
The a(4) = 61 antichains:
{1234} {12}{34} {12}{13}{14} {12}{13}{14}{24} {12}{13}{14}{24}{34}
{13}{24} {12}{13}{24} {12}{13}{14}{34} {12}{13}{23}{24}{34}
{12}{134} {12}{13}{34} {12}{13}{23}{24}
{12}{234} {12}{14}{34} {12}{13}{23}{34}
{13}{124} {12}{23}{24} {12}{13}{24}{34}
{13}{234} {12}{23}{34} {12}{14}{24}{34}
{14}{123} {12}{24}{34} {12}{23}{24}{34}
{14}{234} {13}{14}{24} {13}{14}{24}{34}
{23}{124} {13}{23}{24} {13}{23}{24}{34}
{23}{134} {13}{23}{34} {12}{13}{14}{234}
{24}{134} {13}{24}{34} {12}{23}{24}{134}
{34}{123} {14}{24}{34} {123}{124}{134}{234}
{123}{124} {12}{13}{234}
{123}{134} {12}{14}{234}
{123}{234} {12}{23}{134}
{124}{134} {12}{24}{134}
{124}{234} {13}{14}{234}
{134}{234} {13}{23}{124}
{14}{34}{123}
{23}{24}{134}
{12}{134}{234}
{13}{124}{234}
{14}{123}{234}
{23}{124}{134}
{123}{124}{134}
{123}{124}{234}
{123}{134}{234}
{124}{134}{234}
Set partitions with different block-sums are
A275780.
MM-numbers of multiset partitions with different part-sums are
A326535.
Antichain covers with equal edge-sums and no singletons are
A326565.
Antichain covers with different edge-sizes and no singletons are
A326569.
The case with singletons allowed is
A326572.
Antichains with equal edge-sums are
A326574.
-
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
cleq[n_]:=Select[stableSets[Subsets[Range[n],{2,n}],SubsetQ[#1,#2]||Total[#1]==Total[#2]&],Union@@#==Range[n]&];
Table[Length[cleq[n]],{n,0,5}]
A326573
Number of connected antichains of subsets of {1..n}, all having different sums.
Original entry on oeis.org
1, 1, 1, 5, 59, 2689, 787382
Offset: 0
The a(3) = 5 antichains:
{{1,2,3}}
{{1,3},{2,3}}
{{1,2},{2,3}}
{{1,2},{1,3}}
{{1,2},{1,3},{2,3}}
The a(4) = 59 antichains:
{1234} {12}{134} {12}{13}{14} {12}{13}{14}{24} {12}{13}{14}{24}{34}
{12}{234} {12}{13}{24} {12}{13}{14}{34} {12}{13}{23}{24}{34}
{13}{124} {12}{13}{34} {12}{13}{23}{24}
{13}{234} {12}{14}{34} {12}{13}{23}{34}
{14}{123} {12}{23}{24} {12}{13}{24}{34}
{14}{234} {12}{23}{34} {12}{14}{24}{34}
{23}{124} {12}{24}{34} {12}{23}{24}{34}
{23}{134} {13}{14}{24} {13}{14}{24}{34}
{24}{134} {13}{23}{24} {13}{23}{24}{34}
{34}{123} {13}{23}{34} {12}{13}{14}{234}
{123}{124} {13}{24}{34} {12}{23}{24}{134}
{123}{134} {14}{24}{34} {123}{124}{134}{234}
{123}{234} {12}{13}{234}
{124}{134} {12}{14}{234}
{124}{234} {12}{23}{134}
{134}{234} {12}{24}{134}
{13}{14}{234}
{13}{23}{124}
{14}{34}{123}
{23}{24}{134}
{12}{134}{234}
{13}{124}{234}
{14}{123}{234}
{23}{124}{134}
{123}{124}{134}
{123}{124}{234}
{123}{134}{234}
{124}{134}{234}
Set partitions with different block-sums are
A275780.
MM-numbers of multiset partitions with different part-sums are
A326535.
Antichain covers with equal edge-sums are
A326566.
A327357
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of sets covering n vertices with non-spanning edge-connectivity k.
Original entry on oeis.org
1, 0, 1, 1, 1, 4, 1, 3, 1, 30, 13, 33, 32, 6, 546, 421, 1302, 1915, 1510, 693, 316, 135, 45, 10, 1
Offset: 0
Triangle begins:
1
0 1
1 1
4 1 3 1
30 13 33 32 6
546 421 1302 1915 1510 693 316 135 45 10 1
Row n = 3 counts the following antichains:
{{1},{2,3}} {{1,2,3}} {{1,2},{1,3}} {{1,2},{1,3},{2,3}}
{{2},{1,3}} {{1,2},{2,3}}
{{3},{1,2}} {{1,3},{2,3}}
{{1},{2},{3}}
The non-covering version is
A327353.
The version for spanning edge-connectivity is
A327352.
The specialization to simple graphs is
A327149, with unlabeled version
A327201.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&eConn[#]==k&]],{n,0,5},{k,0,2^n}]//.{foe___,0}:>{foe}
A326364
Number of intersecting set systems with empty intersection (meaning there is no vertex in common to all the edges) covering n vertices.
Original entry on oeis.org
1, 0, 0, 2, 426, 987404, 887044205940, 291072121051815578010398, 14704019422368226413234332571239460300433492086, 12553242487939461785560846872353486129110194397301168776798213375239447299205732561174066488
Offset: 0
The a(3) = 2 intersecting set systems with empty intersection:
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
Covering set systems with empty intersection are
A318128.
Covering, intersecting set systems are
A305843.
Covering, intersecting antichains with empty intersection are
A326365.
Cf.
A006126,
A007363,
A014466,
A051185,
A058891,
A305844,
A307249,
A318129,
A326361,
A326362,
A326363.
-
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],And[Union@@#==Range[n],#=={}||Intersection@@#=={}]&]],{n,0,4}]
A326569
Number of covering antichains of subsets of {1..n} with no singletons and different edge-sizes.
Original entry on oeis.org
1, 0, 1, 1, 13, 121, 2566, 121199, 13254529
Offset: 0
The a(2) = 1 through a(4) = 13 antichains:
{{1,2}} {{1,2,3}} {{1,2,3,4}}
{{1,2},{1,3,4}}
{{1,2},{2,3,4}}
{{1,3},{1,2,4}}
{{1,3},{2,3,4}}
{{1,4},{1,2,3}}
{{1,4},{2,3,4}}
{{2,3},{1,2,4}}
{{2,3},{1,3,4}}
{{2,4},{1,2,3}}
{{2,4},{1,3,4}}
{{3,4},{1,2,3}}
{{3,4},{1,2,4}}
Set partitions with different block sizes are
A007837.
The case with singletons is
A326570.
-
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
cleq[n_]:=Select[stableSets[Subsets[Range[n],{2,n}],SubsetQ[#1,#2]||Length[#1]==Length[#2]&],Union@@#==Range[n]&];
Table[Length[cleq[n]],{n,0,6}]
A326570
Number of covering antichains of subsets of {1..n} with different edge-sizes.
Original entry on oeis.org
2, 1, 1, 4, 17, 186, 3292, 139161, 14224121
Offset: 0
The a(0) = 2 through a(4) = 17 antichains:
{} {{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}}
{{}} {{1},{2,3}} {{1},{2,3,4}}
{{2},{1,3}} {{2},{1,3,4}}
{{3},{1,2}} {{3},{1,2,4}}
{{4},{1,2,3}}
{{1,2},{1,3,4}}
{{1,2},{2,3,4}}
{{1,3},{1,2,4}}
{{1,3},{2,3,4}}
{{1,4},{1,2,3}}
{{1,4},{2,3,4}}
{{2,3},{1,2,4}}
{{2,3},{1,3,4}}
{{2,4},{1,2,3}}
{{2,4},{1,3,4}}
{{3,4},{1,2,3}}
{{3,4},{1,2,4}}
Set partitions with different block sizes are
A007837.
The case without singletons is
A326569.
(Antichain) covers with equal edge-sizes are
A306021.
-
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
cleq[n_]:=Select[stableSets[Subsets[Range[n]],SubsetQ[#1,#2]||Length[#1]==Length[#2]&],Union@@#==Range[n]&];
Table[Length[cleq[n]],{n,0,6}]
A327356
Number of connected separable antichains of nonempty sets covering n vertices (vertex-connectivity 1).
Original entry on oeis.org
0, 0, 1, 3, 40, 1365
Offset: 0
Non-isomorphic representatives of the a(4) = 40 set-systems:
{{1,2},{1,3,4}}
{{1,2},{1,3},{1,4}}
{{1,2},{1,3},{2,4}}
{{1,2},{1,3},{1,4},{2,3}}
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],vertConnSys[Range[n],#]==1&]],{n,0,4}]
A326373
Number of intersecting set systems with empty intersection (meaning there is no vertex in common to all the edges) on n vertices.
Original entry on oeis.org
1, 1, 1, 3, 435, 989555, 887050136795, 291072121058024908202443, 14704019422368226413236661148207899662350666147, 12553242487939461785560846872353486129110194529637343578112251094358919036718815137721635299
Offset: 0
The a(3) = 3 intersecting set systems with empty intersection:
{}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
The inverse binomial transform is the covering case
A326364.
Set systems with empty intersection are
A318129.
Intersecting set systems are
A051185.
Intersecting antichains with empty intersection are
A326366.
Cf.
A000371,
A006126,
A007363,
A014466,
A058891,
A305844,
A307249,
A318128,
A326361,
A326362,
A326363,
A326365.
-
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],And[#=={}||Intersection@@#=={}]&]],{n,0,4}]
A326874
BII-numbers of abstract simplicial complexes.
Original entry on oeis.org
0, 1, 2, 3, 7, 8, 9, 10, 11, 15, 25, 27, 31, 42, 43, 47, 59, 63, 127, 128, 129, 130, 131, 135, 136, 137, 138, 139, 143, 153, 155, 159, 170, 171, 175, 187, 191, 255, 385, 387, 391, 393, 395, 399, 409, 411, 415, 427, 431, 443, 447, 511, 642, 643, 647, 650, 651, 655
Offset: 1
The sequence of all abstract simplicial complexes together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
7: {{1},{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
15: {{1},{2},{1,2},{3}}
25: {{1},{3},{1,3}}
27: {{1},{2},{3},{1,3}}
31: {{1},{2},{3},{1,2},{1,3}}
42: {{2},{3},{2,3}}
43: {{1},{2},{3},{2,3}}
47: {{1},{2},{3},{1,2},{2,3}}
59: {{1},{2},{3},{1,3},{2,3}}
63: {{1},{2},{3},{1,2},{1,3},{2,3}}
127: {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
128: {{4}}
129: {{1},{4}}
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[0,100],SubsetQ[bpe/@bpe[#],DeleteCases[Union@@Subsets/@bpe/@bpe[#],{}]]&]
Comments