cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A316656 Number of series-reduced rooted identity trees whose leaves span an initial interval of positive integers with multiplicities the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 4, 3, 1, 0, 9, 0, 1, 6, 26, 0, 36, 0, 16, 10, 1, 0, 92, 21, 1, 197, 25, 0, 100, 0, 236, 15, 1, 53, 474
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is an identity tree if no branch appears multiple times under the same root.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of sets of trees begins:
   1:
   2: 1
   3:
   4: (12)
   5:
   6: (1(12))
   7:
   8: (1(23)), (2(13)), (3(12)), (123)
   9: (1(2(12))), (2(1(12))), (12(12))
  10: (1(1(12)))
  11:
  12: (1(1(23))), (1(2(13))), (1(3(12))), (1(123)), (2(1(13))), (3(1(12))), ((12)(13)), (12(13)), (13(12))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=If[Length[m]==1,m,Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],UnsameQ@@#&]];
    Table[Length[gro[Flatten[MapIndexed[Table[#2,{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]]],{n,30}]

Formula

a(prime(n>1)) = 0.
a(2^n) = A000311(n).

A330469 Number of series-reduced rooted trees whose leaves are multisets with a total of n elements covering an initial interval of positive integers.

Original entry on oeis.org

1, 1, 4, 24, 250, 3744, 73408, 1768088, 50468854, 1664844040, 62304622320, 2607765903568, 120696071556230, 6120415124163512, 337440974546042416, 20096905939846645064, 1285779618228281270718, 87947859243850506008984, 6404472598196204610148232
Offset: 0

Views

Author

Gus Wiseman, Dec 22 2019

Keywords

Comments

Also the number of different colorings of phylogenetic trees with n labels using a multiset of colors covering an initial interval of positive integers. A phylogenetic tree is a series-reduced rooted tree whose leaves are (usually disjoint) sets.

Examples

			The a(3) = 24 trees:
  (123)          (122)          (112)          (111)
  ((1)(23))      ((1)(22))      ((1)(12))      ((1)(11))
  ((2)(13))      ((2)(12))      ((2)(11))      ((1)(1)(1))
  ((3)(12))      ((1)(2)(2))    ((1)(1)(2))    ((1)((1)(1)))
  ((1)(2)(3))    ((1)((2)(2)))  ((1)((1)(2)))
  ((1)((2)(3)))  ((2)((1)(2)))  ((2)((1)(1)))
  ((2)((1)(3)))
  ((3)((1)(2)))
		

Crossrefs

The singleton-reduced version is A316651.
The unlabeled version is A330465.
The strongly normal case is A330467.
The case when leaves are sets is A330764.
Row sums of A330762.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
    amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]],Length[s]],{s,Split[c]}],{c,Select[mps[m],Length[#]>1&]}];
    Table[Sum[amemo[m],{m,allnorm[n]}],{n,0,5}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(n+k-1, k-1)]))[n])); v}
    seq(n)={concat([1], sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 29 2019

Extensions

Terms a(9) and beyond from Andrew Howroyd, Dec 29 2019

A330675 Number of balanced reduced multisystems of maximum depth whose atoms constitute a strongly normal multiset of size n.

Original entry on oeis.org

1, 1, 2, 6, 43, 440, 7158, 151414
Offset: 0

Views

Author

Gus Wiseman, Dec 30 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.

Examples

			The a(2) = 2 and a(3) = 6 multisystems:
  {1,1}  {{1},{1,1}}
  {1,2}  {{1},{1,2}}
         {{1},{2,3}}
         {{2},{1,1}}
         {{2},{1,3}}
         {{3},{1,2}}
The a(4) = 43 multisystems (commas and outer brackets elided):
  {{1}}{{1}{11}} {{1}}{{1}{12}} {{1}}{{1}{22}} {{1}}{{1}{23}} {{1}}{{2}{34}}
  {{11}}{{1}{1}} {{11}}{{1}{2}} {{11}}{{2}{2}} {{11}}{{2}{3}} {{12}}{{3}{4}}
                 {{1}}{{2}{11}} {{1}}{{2}{12}} {{1}}{{2}{13}} {{1}}{{3}{24}}
                 {{12}}{{1}{1}} {{12}}{{1}{2}} {{12}}{{1}{3}} {{13}}{{2}{4}}
                 {{2}}{{1}{11}} {{2}}{{1}{12}} {{1}}{{3}{12}} {{1}}{{4}{23}}
                                {{2}}{{2}{11}} {{13}}{{1}{2}} {{14}}{{2}{3}}
                                {{22}}{{1}{1}} {{2}}{{1}{13}} {{2}}{{1}{34}}
                                               {{2}}{{3}{11}} {{2}}{{3}{14}}
                                               {{23}}{{1}{1}} {{23}}{{1}{4}}
                                               {{3}}{{1}{12}} {{2}}{{4}{13}}
                                               {{3}}{{2}{11}} {{24}}{{1}{3}}
                                                              {{3}}{{1}{24}}
                                                              {{3}}{{2}{14}}
                                                              {{3}}{{4}{12}}
                                                              {{34}}{{1}{2}}
                                                              {{4}}{{1}{23}}
                                                              {{4}}{{2}{13}}
                                                              {{4}}{{3}{12}}
		

Crossrefs

The case with all atoms equal is A000111.
The case with all atoms different is A006472.
The version allowing all depths is A330475.
The unlabeled version is A330663.
The version where the atoms are the prime indices of n is A330665.
The (weakly) normal version is A330676.
The version where the degrees are the prime indices of n is A330728.
Multiset partitions of strongly normal multisets are A035310.
Series-reduced rooted trees with strongly normal leaves are A316652.

Programs

  • Mathematica
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				

A316654 Number of series-reduced rooted identity trees whose leaves span an initial interval of positive integers with multiplicities an integer partition of n.

Original entry on oeis.org

1, 1, 5, 39, 387, 4960, 74088, 1312716, 26239484, 595023510, 14908285892, 412903136867, 12448252189622, 407804188400373, 14380454869464352, 544428684832123828, 21991444994187529639, 945234507638271696504, 43042162953650721470752, 2071216980365429970912347
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is an identity tree if no branch appears multiple times under the same root.

Examples

			The a(3) = 5 trees are (1(12)), (1(23)), (2(13)), (3(12)), (123).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=If[Length[m]==1,m,Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],UnsameQ@@#&]];
    Table[Sum[Length[gro[m]],{m,Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]}],{n,5}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n]=polcoef(sWeighT(x*Ser(v[1..n])), n)); x*Ser(v)}
    StronglyNormalLabelingsSeq(cycleIndexSeries(12)) \\ Andrew Howroyd, Jan 22 2021

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 22 2021

A330676 Number of balanced reduced multisystems of weight n and maximum depth whose atoms cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 2, 8, 70, 1012, 21944, 665708, 26917492, 1399033348, 90878863352, 7214384973908, 687197223963640, 77354805301801012, 10158257981179981304, 1539156284259756811748, 266517060496258245459352, 52301515332984084095078308, 11546416513975694879642736152
Offset: 0

Views

Author

Gus Wiseman, Dec 30 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. The weight of an atom is 1, while the weight of a multiset is the sum of weights of its elements.
A finite multiset is normal if it covers an initial interval of positive integers.

Examples

			The a(0) = 1 through a(3) = 8 multisystems:
  {}  {1}  {1,1}  {{1},{1,1}}
           {1,2}  {{1},{1,2}}
                  {{1},{2,2}}
                  {{1},{2,3}}
                  {{2},{1,1}}
                  {{2},{1,2}}
                  {{2},{1,3}}
                  {{3},{1,2}}
		

Crossrefs

Row sums of A330778.
The case with all atoms equal is A000111.
The case with all atoms different is A006472.
The version allowing all depths is A330655.
The unlabeled version is A330663.
The version where the atoms are the prime indices of n is A330665.
The strongly normal version is A330675.
The version where the degrees are the prime indices of n is A330728.
Multiset partitions of normal multisets are A255906.
Series-reduced rooted trees with normal leaves are A316651.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=vector(n), u=vector(n)); v[1]=k; for(n=1, #v, for(i=n, #v, u[i] += v[i]*(-1)^(i-n)*binomial(i-1, n-1)); v=EulerT(v)); u}
    seq(n)={concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 30 2020

Extensions

Terms a(8) and beyond from Andrew Howroyd, Dec 30 2019

A319376 Triangle read by rows: T(n,k) is the number of lone-child-avoiding rooted trees with n leaves of exactly k colors.

Original entry on oeis.org

1, 1, 1, 2, 6, 4, 5, 30, 51, 26, 12, 146, 474, 576, 236, 33, 719, 3950, 8572, 8060, 2752, 90, 3590, 31464, 108416, 175380, 134136, 39208, 261, 18283, 245916, 1262732, 3124650, 4014348, 2584568, 660032, 766, 94648, 1908858, 14047288, 49885320, 95715728, 101799712, 56555904, 12818912
Offset: 1

Views

Author

Andrew Howroyd, Sep 17 2018

Keywords

Comments

Lone-child-avoiding rooted trees are also called planted series-reduced trees in some other sequences.

Examples

			Triangle begins:
    1;
    1,     1;
    2,     6,      4;
    5,    30,     51,      26;
   12,   146,    474,     576,     236;
   33,   719,   3950,    8572,    8060,   2752;
   90,  3590,  31464,  108416,  175380,  134136,   39208;
  261, 18283, 245916, 1262732, 3124650, 4014348, 2584568, 660032;
  ...
From _Gus Wiseman_, Dec 31 2020: (Start)
The 12 trees counted by row n = 3:
  (111)    (112)    (123)
  (1(11))  (122)    (1(23))
           (1(12))  (2(13))
           (1(22))  (3(12))
           (2(11))
           (2(12))
(End)
		

Crossrefs

Columns k=1..2 are A000669, A319377.
Main diagonal is A000311.
Row sums are A316651.
The unlabeled version, counting inequivalent leaf-colorings of lone-child-avoiding rooted trees, is A330465.
Lone-child-avoiding rooted trees are counted by A001678 (shifted left once).
Labeled lone-child-avoiding rooted trees are counted by A060356.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
    T:= (n, k)-> add(A(n, k-j)*(-1)^j*binomial(k, j), j=0..k-1):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Sep 18 2018
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j] b[n - i j, i - 1, k], {j, 0, n/i}]]];
    A[n_, k_] := If[n < 2, n k, b[n, n - 1, k]];
    T[n_, k_] := Sum[(-1)^(k - i)*Binomial[k, i]*A[n, i], {i, 1, k}];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 24 2019, after Alois P. Heinz *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    mtot[m_]:=Prepend[Join@@Table[Tuples[mtot/@p],{p,Select[mps[m],1Gus Wiseman, Dec 31 2020 *)
  • PARI
    \\ here R(n,k) is k-th column of A319254.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v}
    M(n)={my(v=vector(n, k, R(n,k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*v[i])))}
    {my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))}

Formula

T(n,k) = Sum_{i=1..k} (-1)^(k-i)*binomial(k,i)*A319254(n,i).
Sum_{k=1..n} k * T(n,k) = A326396(n). - Alois P. Heinz, Sep 11 2019

A330654 Number of series/singleton-reduced rooted trees on normal multisets of size n.

Original entry on oeis.org

1, 1, 2, 12, 112, 1444, 24099, 492434, 11913985
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2019

Keywords

Comments

A series/singleton-reduced rooted tree on a multiset m is either the multiset m itself or a sequence of series/singleton-reduced rooted trees, one on each part of a multiset partition of m that is neither minimal (all singletons) nor maximal (only one part).
A finite multiset is normal if it covers an initial interval of positive integers.
First differs from A316651 at a(6) = 24099, A316651(6) = 24086. For example, ((1(12))(2(11))) and ((2(11))(1(12))) are considered identical for A316651 (series-reduced rooted trees), but {{{1},{1,2}},{{2},{1,1}}} and {{{2},{1,1}},{{1},{1,2}}} are different series/singleton-reduced rooted trees.

Examples

			The a(0) = 1 through a(3) = 12 trees:
  {}  {1}  {1,1}  {1,1,1}
           {1,2}  {1,1,2}
                  {1,2,2}
                  {1,2,3}
                  {{1},{1,1}}
                  {{1},{1,2}}
                  {{1},{2,2}}
                  {{1},{2,3}}
                  {{2},{1,1}}
                  {{2},{1,2}}
                  {{2},{1,3}}
                  {{3},{1,2}}
		

Crossrefs

The orderless version is A316651.
The strongly normal case is A330471.
The unlabeled version is A330470.
The balanced version is A330655.
The case with all atoms distinct is A000311.
The case with all atoms equal is A196545.
Normal multiset partitions are A255906.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    ssrtrees[m_]:=Prepend[Join@@Table[Tuples[ssrtrees/@p],{p,Select[mps[m],Length[m]>Length[#1]>1&]}],m];
    Table[Sum[Length[ssrtrees[s]],{s,allnorm[n]}],{n,0,5}]

A319369 Number of series-reduced rooted trees with n leaves of n colors.

Original entry on oeis.org

1, 3, 28, 430, 9376, 269675, 9632960, 411395268, 20445999734, 1159248404721, 73846864163348, 5221802726902476, 405858598184643930, 34392275731729465799, 3155760058245300968416, 311720334688779807141832, 32980137195294216968253900, 3720954854814866649904474180
Offset: 1

Views

Author

Andrew Howroyd, Sep 17 2018

Keywords

Comments

Not all of the n colors need to be used.

Crossrefs

Main diagonal of A319254.
Cf. A000311 (1 leaf of each color), A316651.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
    a:= n-> A(n$2):
    seq(a(n), n=1..20);  # Alois P. Heinz, Sep 18 2018
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j]*b[n - i*j, i - 1, k], {j, 0, n/i}]]];
    A[n_, k_] := If[n < 2, n*k, b[n, n - 1, k]];
    a[n_] := A[n, n];
    a /@ Range[1, 20] (* Jean-François Alcover, Sep 24 2019, after Alois P. Heinz *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    a(n)={my(v=[n]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v[n]}

Formula

a(n) ~ c * d^n * n^(n - 3/2), where d = 1/(2*log(2) - 1) = 2.588699449562089830805384431942090... and c = 0.2580000331300831455241033648... - Vaclav Kotesovec, Sep 18 2019, updated Mar 16 2024

A319590 Number of binary rooted trees with n leaves spanning an initial interval of positive integers and all non-leaf nodes having out-degree 2.

Original entry on oeis.org

1, 2, 8, 58, 576, 7440, 117628, 2201014, 47552012, 1164812674, 31898271660, 965666303078, 32022547868872, 1154362247246714, 44945574393963472, 1879720975031634318, 84039891496643620196, 3999886612000379135606, 201919706444252727224852, 10775953237291840618917900
Offset: 1

Views

Author

Andrew Howroyd, Sep 23 2018

Keywords

Crossrefs

Row sums of A319541.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0,
          (t-> t*(1-t)/2)(b(n/2, k)))+add(b(i, k)*b(n-i, k), i=1..n/2))
        end:
    a:= n-> add(add((-1)^i*binomial(k, i)*b(n, k-i), i=0..k), k=0..n):
    seq(a(n), n=1..23);  # Alois P. Heinz, Sep 07 2019
  • Mathematica
    b[n_, k_] := b[n, k] = If[n < 2, k n, If[OddQ[n], 0, Function[t, t(1 - t)/2][b[n/2, k]]] + Sum[b[i, k] b[n - i, k], {i, 1, n/2}]];
    a[n_] := Sum[Sum[(-1)^i Binomial[k, i] b[n, k - i], {i, 0, k}], {k, 0, n}];
    Array[a, 23] (* Jean-François Alcover, Apr 10 2020, after Alois P. Heinz *)
  • PARI
    \\ here R(n, k) is k-th column of A319539 as a vector.
    R(n, k)={my(v=vector(n)); v[1]=k; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v}
    seq(n)={sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) )}

A326396 Total number of colors in all series-reduced rooted trees with n leaves where colors span an initial interval of the color palette.

Original entry on oeis.org

1, 3, 26, 322, 5210, 104421, 2491498, 68907073, 2166242180, 76266794945, 2972079029674, 126987589678185, 5902427979920102, 296484317531254557, 16003975713659818226, 923838934059255332723, 56788871072327503930862, 3703444074072753204057172
Offset: 1

Views

Author

Alois P. Heinz, Sep 11 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
    a:= n-> add(k*add(A(n, k-j)*(-1)^j*binomial(k, j), j=0..k-1), k=1..n):
    seq(a(n), n=1..20);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
        Sum[Binomial[A[i, k] + j - 1, j] b[n - i j, i - 1, k], {j, 0, n/i}]]];
    A [n_, k_] := If[n < 2, n k, b[n, n - 1, k]];
    a[n_] := Sum[k Sum[A[n, k-j](-1)^j Binomial[k, j], {j, 0, k-1}], {k, 1, n}];
    Array[a, 20] (* Jean-François Alcover, Dec 22 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} k * A319376(n,k).
From Vaclav Kotesovec, Sep 18 2019: (Start)
a(n) ~ c * d^n * n^n, where d = 1.37392076830840090205551979... and c = 0.29889555940946459367729...
a(n) ~ n*A316651(n)/(2*log(2)). (End)
Previous Showing 11-20 of 29 results. Next