cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 63 results. Next

A381719 Numbers whose prime indices cannot be partitioned into sets with a common sum.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 184, 188, 189, 192
Offset: 1

Views

Author

Gus Wiseman, Apr 22 2025

Keywords

Comments

Differs from A059404, A323055, A376250 in lacking 150.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
Also numbers that cannot be factored into squarefree numbers with a common sum of prime indices (A056239).

Examples

			The prime indices of 150 are {1,2,3,3}, and {{3},{3},{1,2}} is a partition into sets with a common sum, so 150 is not in the sequence.
		

Crossrefs

Twice-partitions of this type (sets with a common sum) are counted by A279788.
These multiset partitions (sets with a common sum) are ranked by A326534 /\ A302478.
For distinct block-sums we have A381806, counted by A381990 (complement A381992).
For constant blocks we have A381871 (zeros of A381995), counted by A381993.
Partitions of this type are counted by A381994.
These are the zeros of A382080.
Normal multiset partitions of this type are counted by A382429, see A326518.
The complement counted by A383308.
A000041 counts integer partitions, strict A000009.
A001055 counts factorizations, strict A045778.
A050320 counts factorizations into squarefree numbers, see A381078, A381454.
A050326 counts factorizations into distinct squarefree numbers.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.
A381633 counts set systems with distinct sums, see A381634, A293243.
Set multipartitions: A089259, A116540, A270995, A296119, A318360.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Select[Range[100],Select[mps[prix[#]], SameQ@@Total/@#&&And@@UnsameQ@@@#&]=={}&]

A382080 Number of ways to partition the prime indices of n into sets with a common sum.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
Also the number of factorizations of n into squarefree numbers > 1 with equal sums of prime indices.

Examples

			The prime indices of 900 are {1,1,2,2,3,3}, with the following partitions into sets with a common sum:
  {{1,2,3},{1,2,3}}
  {{3},{3},{1,2},{1,2}}
So a(900) = 2.
		

Crossrefs

For just sets we have A050320, distinct A050326.
Twice-partitions of this type are counted by A279788.
For just a common sum we have A321455.
MM-numbers of these multiset partitions are A326534 /\ A302478.
For distinct instead of equal sums we have A381633.
For constant instead of strict blocks we have A381995.
Positions of 0 are A381719, counted by A381994.
A000688 counts factorizations into prime powers, distinct A050361.
A001055 counts factorizations, strict A045778.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Table[Length[Select[mps[prix[n]], SameQ@@Total/@#&&And@@UnsameQ@@@#&]],{n,100}]

A321470 Number of integer partitions of the n-th triangular number 1 + 2 + ... + n that can be obtained by choosing a partition of each integer from 1 to n and combining.

Original entry on oeis.org

1, 1, 2, 5, 16, 54, 212, 834, 3558, 15394, 69512, 313107, 1474095, 6877031, 32877196
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Comments

a(n) is the number of integer partitions finer than (n, ..., 3, 2, 1) in the poset of integer partitions of 1 + 2 + ... + n ordered by refinement.
a(n+1)/a(n) appears to converge as n -> oo. - Chai Wah Wu, Nov 14 2018

Examples

			The a(1) = 1 through a(4) = 16 partitions:
  (1)  (21)   (321)     (4321)
       (111)  (2211)    (32221)
              (3111)    (33211)
              (21111)   (42211)
              (111111)  (43111)
                        (222211)
                        (322111)
                        (331111)
                        (421111)
                        (2221111)
                        (3211111)
                        (4111111)
                        (22111111)
                        (31111111)
                        (211111111)
                        (1111111111)
The partition (222211) is the combination of (22)(21)(2)(1), so is counted under a(4). The partition (322111) is the combination of (22)(3)(11)(1), (31)(21)(2)(1), or (211)(3)(2)(1), so is also counted under a(4).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Union[Sort/@Join@@@Tuples[IntegerPartitions/@Range[1,n]]]],{n,6}]
  • Python
    from collections import Counter
    from itertools import count, islice
    from sympy.utilities.iterables import partitions
    def A321470_gen(): # generator of terms
        aset = {(1,)}
        yield 1
        for n in count(2):
            yield len(aset)
            aset = {tuple(sorted(p+q)) for p in aset for q in (tuple(sorted(Counter(q).elements())) for q in partitions(n))}
    A321470_list = list(islice(A321470_gen(),10)) # Chai Wah Wu, Sep 20 2023

Formula

a(n) <= A173519(n). - David A. Corneth, Sep 20 2023

Extensions

a(9)-a(11) from Alois P. Heinz, Nov 12 2018
a(12)-a(13) from Chai Wah Wu, Nov 13 2018
a(14) from Chai Wah Wu, Sep 20 2023

A321471 Heinz numbers of integer partitions that can be partitioned into blocks with sums {1, 2, ..., k} for some k.

Original entry on oeis.org

2, 6, 8, 30, 36, 40, 48, 64, 210, 252, 270, 280, 300, 324, 336, 360, 400, 432, 448, 480, 576, 640, 768, 1024, 2310, 2772, 2940, 2970, 3080, 3150, 3300, 3528, 3564, 3696, 3780, 3920, 3960, 4050, 4200, 4400, 4500, 4536, 4704, 4752, 4860, 4928, 5040, 5280, 5400
Offset: 1

Views

Author

Gus Wiseman, Nov 13 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
These partitions are those that are finer than (k, ..., 3, 2, 1) in the poset of integer partitions of 1 + 2 + ... + k, for some k, ordered by refinement.

Examples

			The sequence of all integer partitions whose Heinz numbers are in the sequence begins: (1), (21), (111), (321), (2211), (3111), (21111), (111111), (4321), (42211), (32221), (43111), (33211), (222211), (421111), (322111), (331111), (2221111), (4111111), (3211111), (22111111), (31111111), (211111111), (1111111111).
The partition (322111) has Heinz number 360 and can be partitioned as ((1)(2)(3)(112)), ((1)(2)(12)(13)), or ((1)(11)(3)(22)), so 360 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[2,1000],Select[Map[Total[primeMS[#]]&,facs[#],{2}],Sort[#]==Range[Max@@#]&]!={}&]

A381991 Numbers whose prime indices have a unique multiset partition into constant multisets with distinct sums.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79
Offset: 1

Views

Author

Gus Wiseman, Mar 22 2025

Keywords

Comments

Also numbers with a unique factorization into prime powers with distinct sums of prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 270 are {1,2,2,2,3}, and there are two multiset partitions into constant multisets with distinct sums: {{1},{2},{3},{2,2}} and {{1},{3},{2,2,2}}, so 270 is not in the sequence.
The prime indices of 300 are {1,1,2,3,3}, of which there are no multiset partitions into constant multisets with distinct sums, so 300 is not in the sequence.
The prime indices of 360 are {1,1,1,2,2,3}, of which there is only one multiset partition into constant multisets with distinct sums: {{1},{1,1},{3},{2,2}}, so 360 is in the sequence.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    6: {1,2}
    7: {4}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   17: {7}
   18: {1,2,2}
   19: {8}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   23: {9}
   24: {1,1,1,2}
   25: {3,3}
		

Crossrefs

For distinct blocks instead of block-sums we have A004709, counted by A000726.
Twice-partitions of this type are counted by A279786.
MM-numbers of these multiset partitions are A326535 /\ A355743.
These are the positions of 1 in A381635.
For no choices we have A381636 (zeros of A381635), counted by A381717.
For strict instead of constant blocks we have A381870, counted by A382079.
Partitions of this type (unique into constant with distinct) are counted by A382301.
Normal multiset partitions of this type are counted by A382203.
A001055 counts multiset partitions, see A317141 (upper), A300383 (lower), A265947.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
    Select[Range[100],Length[Select[pfacs[#],UnsameQ@@hwt/@#&]]==1&]

A321467 Number of factorizations of n! into factors > 1 that can be obtained by taking the block-products of some set partition of {2,3,...,n}.

Original entry on oeis.org

1, 1, 1, 2, 5, 15, 47, 183, 719, 3329, 14990, 83798, 393864, 2518898
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2018

Keywords

Comments

a(n) is the number of factorizations coarser than (2*3*...*n) in the poset of factorizations of n! into factors > 1, ordered by refinement.

Examples

			The a(1) = 1 through a(5) = 15 factorizations:
  ()  (2)  (6)    (24)     (120)
           (2*3)  (3*8)    (2*60)
                  (4*6)    (3*40)
                  (2*12)   (4*30)
                  (2*3*4)  (5*24)
                           (6*20)
                           (8*15)
                           (10*12)
                           (3*5*8)
                           (4*5*6)
                           (2*3*20)
                           (2*4*15)
                           (2*5*12)
                           (3*4*10)
                           (2*3*4*5)
For example, 10*12 = (2*5)*(3*4), so (10*12) is counted under a(5).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Union[Sort/@Apply[Times,sps[Range[2,n]],{2}]]],{n,10}]

A321472 Heinz numbers of integer partitions whose parts can be further partitioned and flattened to obtain the partition (k, ..., 3, 2, 1) for some k.

Original entry on oeis.org

2, 5, 6, 13, 21, 22, 25, 29, 30, 46, 47, 57, 73, 85, 86, 91, 102, 107, 121, 123, 130, 142, 147, 151, 154, 165, 175, 185, 197, 201, 206, 210, 217, 222, 257, 298, 299
Offset: 1

Views

Author

Gus Wiseman, Nov 13 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
These partitions are those that are coarser than (k, ..., 3, 2, 1) in the poset of integer partitions of 1 + 2 + ... + k, for some k, ordered by refinement.

Examples

			The sequence of all integer partitions whose Heinz numbers are in the sequence begins: (1), (3), (2,1), (6), (4,2), (5,1), (3,3), (10), (3,2,1), (9,1), (15), (8,2), (21), (7,3), (14,1), (6,4), (7,2,1), (28), (5,5), (13,2), (6,3,1), (20,1), (4,4,2), (36), (5,4,1), (5,3,2), (4,3,3), (12,3), (45), (19,2), (27,1), (4,3,2,1).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,200],Select[Sort/@Join@@@Tuples[IntegerPartitions/@primeMS[#]],Sort[#]==Range[Max@@#]&]!={}&]

A381637 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into blocks with distinct sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 4, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 5, 1, 2, 2, 4, 2, 5, 1, 3, 2, 4, 1, 5, 1, 2, 3, 3, 2, 5, 1, 5, 2, 2, 1, 6, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 84 are {1,1,2,4}, with 7 multiset partitions into blocks with distinct sums:
  {{1,1,2,4}}
  {{1},{1,2,4}}
  {{2},{1,1,4}}
  {{1,1},{2,4}}
  {{1,2},{1,4}}
  {{1},{2},{1,4}}
  {{1},{4},{1,2}}
with block-sums: {8}, {1,7}, {2,6}, {2,6}, {3,5}, {1,2,5}, {1,3,4}, of which 6 are distinct, so a(84) = 6.
		

Crossrefs

Allowing any block-sums gives A317141 (lower A300383), before sums A001055.
Before taking sums we had A321469.
For distinct blocks instead of distinct block-sums we have A381452.
If each block is a set we have A381634 (zeros A381806), before sums A381633.
For equal instead of distinct block-sums we have A381872, before sums A321455.
Other multiset partitions of prime indices:
- For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
- For set multipartitions (A050320) see A381078 (upper), A381454 (lower).
- For sets of constant multisets (A050361) see A381715.
- For sets of constant multisets with distinct sums (A381635) see A381716, A381636.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@Total/@#&]]],{n,100}]

A383014 Numbers whose prime indices can be partitioned into constant blocks with a common sum.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 36, 37, 40, 41, 43, 47, 48, 49, 53, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 108, 109, 112, 113, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 169
Offset: 1

Views

Author

Gus Wiseman, Apr 22 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 36 are {1,1,2,2}, and a partition into constant blocks with a common sum is: {{2},{2},{1,1}}, so 36 is in the sequence.
The prime indices of 43200 are {1,1,1,1,1,1,2,2,2,3,3}, and a partition into constant blocks with a common sum is: {{{1,1,1,1,1,1},{2,2,2},{3,3}}}, so 43200 is in the sequence.
The prime indices of 520000 are {1,1,1,1,1,1,3,3,3,3,6} and a partition into constant blocks with a common sum is: {{1,1,1,1,1,1},{3,3},{3,3},{6}}, so 520000 is in the sequence.
The terms together with their prime indices begin:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  11: {5}
  12: {1,1,2}
  13: {6}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  32: {1,1,1,1,1}
  36: {1,1,2,2}
  37: {12}
  40: {1,1,1,3}
		

Crossrefs

Twice-partitions of this type (constant blocks with a common sum) are counted by A279789.
Includes all elements of A353833.
For distinct sums we have the complement of A381636.
For strict blocks we have the complement of A381719.
For distinct sums and strict blocks we have the complement of A381806.
The complement is A381871, counted by A381993.
These are the positions of positive terms in A381995.
Partitions of this type are counted by A383093.
Constant blocks: A000688, A006171, A279784, A295935, A381453 (lower), A381455 (upper).
A001055 counts factorizations (multiset partitions of prime indices), strict A045778.
A050361 counts factorizations into distinct prime powers.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn, {ptn,IntegerPartitions[Length[y]]}];
    Select[Range[100], Select[Join@@@Tuples[mce/@Split[prix[#]]], SameQ@@Total/@#&]!={}&]

A317143 In the ranked poset of integer partitions ordered by refinement, row n lists the Heinz numbers of integer partitions finer (less) than or equal to the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 6, 8, 6, 8, 7, 9, 10, 12, 16, 8, 9, 12, 16, 10, 12, 16, 11, 14, 15, 18, 20, 24, 32, 12, 16, 13, 21, 22, 25, 27, 28, 30, 36, 40, 48, 64, 14, 18, 20, 24, 32, 15, 18, 20, 24, 32, 16, 17, 26, 33, 35, 42, 44, 45, 50, 54, 56, 60, 72, 80, 96, 128
Offset: 1

Views

Author

Gus Wiseman, Jul 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
If x and y are partitions of the same integer and it is possible to produce x by further partitioning the parts of y, flattening, and sorting, then x <= y.

Examples

			The partitions finer than or equal to (2,2) are (2,2), (2,1,1), (1,1,1,1), with Heinz numbers 9, 12, 16, so the 9th row is {9, 12, 16}.
Triangle begins:
   1
   2
   3   4
   4
   5   6   8
   6   8
   7   9  10  12  16
   8
   9  12  16
  10  12  16
  11  14  15  18  20  24  32
  12  16
  13  21  22  25  27  28  30  36  40  48  64
  14  18  20  24  32
  15  18  20  24  32
  16
  17  26  33  35  42  44  45  50  54  56  60  72  80  96 128
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Union[Times@@@Map[Prime,Join@@@Tuples[IntegerPartitions/@primeMS[n]],{2}]],{n,12}]
Previous Showing 41-50 of 63 results. Next