cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 72 results. Next

A330054 Number of non-isomorphic set-systems of weight n with no endpoints.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 4, 4, 16, 26, 87, 181, 570, 1453, 4464, 13038, 41548, 132217, 442603, 1506803, 5305174, 19092816, 70548770, 266495254, 1029835424, 4063610148, 16366919221, 67217627966, 281326631801, 1199048810660, 5201341196693, 22950740113039, 102957953031700
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2019

Keywords

Comments

A set-system is a finite set of finite nonempty set of positive integers. An endpoint is a vertex appearing only once (degree 1). The weight of a set-system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(8) = 16 multiset partitions (empty columns not shown):
  0  {1}{2}{12}  {12}{13}{23}    {13}{23}{123}      {12}{134}{234}
                 {1}{23}{123}    {1}{3}{23}{123}    {1}{234}{1234}
                 {1}{2}{13}{23}  {3}{12}{13}{23}    {12}{34}{1234}
                 {1}{2}{3}{123}  {1}{2}{3}{13}{23}  {1}{12}{34}{234}
                                                    {12}{13}{24}{34}
                                                    {1}{2}{134}{234}
                                                    {1}{2}{34}{1234}
                                                    {2}{13}{14}{234}
                                                    {2}{13}{23}{123}
                                                    {3}{13}{23}{123}
                                                    {1}{2}{13}{24}{34}
                                                    {1}{2}{3}{14}{234}
                                                    {1}{2}{3}{23}{123}
                                                    {1}{2}{3}{4}{1234}
                                                    {2}{3}{12}{13}{23}
                                                    {1}{2}{3}{4}{12}{34}
		

Crossrefs

The complement is counted by A330052.
The multiset partition version is A302545.
Non-isomorphic set-systems with no singletons are A306005.
Non-isomorphic set-systems counted by vertices are A000612.
Non-isomorphic set-systems counted by weight are A283877.

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={my(g=1+x*Ser(WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)))); (1-x)*g - subst(g,x,x^2)}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(t=1, n, subst(K(q,t,n\t)/t,x,x^t) )), n)); s/n!)} \\ Andrew Howroyd, Jan 27 2024

Extensions

a(11) onwards from Andrew Howroyd, Jan 27 2024

A330234 Number of achiral factorizations of n into factors > 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 0, 1, 2, 2, 5, 1, 0, 1, 0, 2, 2, 1, 0, 2, 2, 3, 0, 1, 2, 1, 7, 2, 2, 2, 5, 1, 2, 2, 0, 1, 2, 1, 0, 0, 2, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 2, 2, 1, 0, 1, 2, 0, 11, 2, 2, 1, 0, 2, 2, 1, 0, 1, 2, 0, 0, 2, 2, 1, 0, 5, 2, 1, 0, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2019

Keywords

Comments

A multiset of multisets is achiral if it is not changed by any permutation of the vertices. A factorization is achiral if taking the multiset of prime indices of each factor gives an achiral multiset of multisets.

Examples

			The a(n) factorizations for n = 2, 6, 27, 36, 243, 216:
  (2)  (6)    (27)     (36)       (243)        (216)
       (2*3)  (3*9)    (4*9)      (3*81)       (6*36)
              (3*3*3)  (6*6)      (9*27)       (8*27)
                       (2*3*6)    (3*9*9)      (12*18)
                       (2*2*3*3)  (3*3*27)     (4*6*9)
                                  (3*3*3*9)    (6*6*6)
                                  (3*3*3*3*3)  (2*3*36)
                                               (2*3*4*9)
                                               (2*3*6*6)
                                               (2*2*3*3*6)
                                               (2*2*2*3*3*3)
		

Crossrefs

The fully chiral version is A330235.
Planted achiral trees are A003238.
Achiral set-systems are counted by A083323.
BII-numbers of achiral set-systems are A330217.
Non-isomorphic achiral multiset partitions are A330223.
Achiral integer partitions are counted by A330224.
MM-numbers of achiral multisets of multisets are A330232.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[facs[n],Length[graprms[primeMS/@#]]==1&]],{n,100}]

A330235 Number of fully chiral factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 0, 1, 3, 2, 0, 1, 4, 1, 0, 0, 5, 1, 4, 1, 4, 0, 0, 1, 7, 2, 0, 3, 4, 1, 0, 1, 7, 0, 0, 0, 4, 1, 0, 0, 7, 1, 0, 1, 4, 4, 0, 1, 12, 2, 4, 0, 4, 1, 7, 0, 7, 0, 0, 1, 4, 1, 0, 4, 11, 0, 0, 1, 4, 0, 0, 1, 16, 1, 0, 4, 4, 0, 0, 1, 12, 5, 0, 1, 4, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2019

Keywords

Comments

A multiset of multisets is fully chiral every permutation of the vertices gives a different representative. A factorization is fully chiral if taking the multiset of prime indices of each factor gives a fully chiral multiset of multisets.

Examples

			The a(n) factorizations for n = 1, 4, 8, 12, 16, 24, 48:
  ()  (4)    (8)      (12)     (16)       (24)       (48)
      (2*2)  (2*4)    (2*6)    (2*8)      (3*8)      (6*8)
             (2*2*2)  (3*4)    (4*4)      (4*6)      (2*24)
                      (2*2*3)  (2*2*4)    (2*12)     (3*16)
                               (2*2*2*2)  (2*2*6)    (4*12)
                                          (2*3*4)    (2*3*8)
                                          (2*2*2*3)  (2*4*6)
                                                     (3*4*4)
                                                     (2*2*12)
                                                     (2*2*2*6)
                                                     (2*2*3*4)
                                                     (2*2*2*2*3)
		

Crossrefs

The costrict (or T_0) version is A316978.
The achiral version is A330234.
Planted achiral trees are A003238.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Full chiral partitions are A330228.
Fully chiral covering set-systems are A330229.
MM-numbers of fully chiral multisets of multisets are A330236.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[facs[n],Length[graprms[primeMS/@#]]==Length[Union@@primeMS/@#]!&]],{n,100}]

A368422 Number of non-isomorphic set multipartitions of weight n satisfying a strict version of the axiom of choice.

Original entry on oeis.org

1, 1, 2, 4, 9, 18, 43, 95, 233, 569
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2023

Keywords

Comments

A set multipartition is a finite multiset of finite nonempty sets. The weight of a set multipartition is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any sequence of nonempty sets, it is possible to choose a sequence containing an element from each. In the strict version, the elements of this sequence must be distinct, meaning none is chosen more than once.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 set multipartitions:
  {{1}}  {{1,2}}    {{1,2,3}}      {{1,2,3,4}}        {{1,2,3,4,5}}
         {{1},{2}}  {{1},{2,3}}    {{1,2},{1,2}}      {{1},{2,3,4,5}}
                    {{2},{1,2}}    {{1},{2,3,4}}      {{1,2},{3,4,5}}
                    {{1},{2},{3}}  {{1,2},{3,4}}      {{1,4},{2,3,4}}
                                   {{1,3},{2,3}}      {{2,3},{1,2,3}}
                                   {{3},{1,2,3}}      {{4},{1,2,3,4}}
                                   {{1},{2},{3,4}}    {{1},{2,3},{2,3}}
                                   {{1},{3},{2,3}}    {{1},{2},{3,4,5}}
                                   {{1},{2},{3},{4}}  {{1},{2,3},{4,5}}
                                                      {{1},{2,4},{3,4}}
                                                      {{1},{4},{2,3,4}}
                                                      {{2},{1,3},{2,3}}
                                                      {{2},{3},{1,2,3}}
                                                      {{3},{1,3},{2,3}}
                                                      {{4},{1,2},{3,4}}
                                                      {{1},{2},{3},{4,5}}
                                                      {{1},{2},{4},{3,4}}
                                                      {{1},{2},{3},{4},{5}}
		

Crossrefs

The case of unlabeled graphs is A134964, complement A140637.
Set multipartitions have ranks A302478, cf. A073576.
The case of labeled graphs is A133686, complement A367867.
The complement without repeats is A368094 connected A368409.
Without repeats we have A368095, connected A368410.
The complement allowing repeats is A368097, ranks A355529.
Allowing repeated elements gives A368098, ranks A368100.
Factorizations of this type are counted by A368414, complement A368413.
The complement is counted by A368421.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute /@ Select[mpm[n],And@@UnsameQ@@@#&&Select[Tuples[#], UnsameQ@@#&]!={}&]]],{n,0,6}]

A318559 Number of combinatory separations of the multiset of prime factors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 3, 1, 7, 2, 2, 2, 8, 1, 2, 2, 7, 1, 3, 1, 4, 4, 2, 1, 12, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 8, 1, 2, 4, 11, 2, 3, 1, 4, 2, 3, 1, 15, 1, 2, 4, 4, 2, 3, 1, 12, 5, 2, 1, 8, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers. The type of a multiset is the unique normal multiset that has the same sequence of multiplicities when its entries are taken in increasing order. For example the type of 335556 is 112223. A (headless) combinatory separation of a multiset m is a multiset of normal multisets {t_1,...,t_k} such that there exist multisets {s_1,...,s_k} with multiset union m and such that s_i has type t_i for each i = 1...k.

Examples

			The a(60) = 8 combinatory separations of {2,2,3,5}:
  {1123},
  {1,112}, {1,123}, {11,12}, {12,12},
  {1,1,11}, {1,1,12},
  {1,1,1,1}.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
    Table[Length[Union[Sort/@Map[normize,mps[primeMS[n]],{2}]]],{n,100}]

A321407 Number of non-isomorphic multiset partitions of weight n with no constant parts.

Original entry on oeis.org

1, 0, 1, 2, 7, 13, 47, 111, 367, 1057, 3474, 11116, 38106, 131235, 470882, 1720959, 6472129, 24860957, 97779665, 392642763, 1610045000, 6732768139, 28699327441, 124600601174, 550684155992, 2476019025827, 11320106871951, 52598300581495, 248265707440448, 1189855827112636, 5787965846277749
Offset: 0

Views

Author

Gus Wiseman, Nov 29 2018

Keywords

Comments

Also the number of nonnegative integer matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which every row has at least two nonzero entries.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 13 multiset partitions:
  {{1,2}}  {{1,2,2}}  {{1,1,2,2}}    {{1,1,2,2,2}}
           {{1,2,3}}  {{1,2,2,2}}    {{1,2,2,2,2}}
                      {{1,2,3,3}}    {{1,2,2,3,3}}
                      {{1,2,3,4}}    {{1,2,3,3,3}}
                      {{1,2},{1,2}}  {{1,2,3,4,4}}
                      {{1,2},{3,4}}  {{1,2,3,4,5}}
                      {{1,3},{2,3}}  {{1,2},{1,2,2}}
                                     {{1,2},{2,3,3}}
                                     {{1,2},{3,4,4}}
                                     {{1,2},{3,4,5}}
                                     {{1,3},{2,3,3}}
                                     {{1,4},{2,3,4}}
                                     {{2,3},{1,2,3}}
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    S(q, t, k)={sum(j=1, #q, if(t%q[j]==0, q[j]))*vector(k,i,1)}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(t=1, n, subst(x*Ser(K(q, t, n\t)-S(q, t, n\t))/t, x, x^t) )), n)); s/n!)} \\ Andrew Howroyd, Jan 17 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 17 2023

A368421 Number of non-isomorphic set multipartitions of weight n contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 1, 2, 7, 16, 47, 116, 325, 861
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2023

Keywords

Comments

A set multipartition is a finite multiset of finite nonempty sets. The weight of a set multipartition is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any sequence of nonempty sets Y, it is possible to choose a sequence containing an element from each. In the strict version, the elements of this sequence must be distinct, meaning none is chosen more than once.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 16 set multipartitions:
  {{1},{1}}  {{1},{1},{1}}  {{1},{1},{2,3}}    {{1},{1},{2,3,4}}
             {{1},{2},{2}}  {{1},{2},{1,2}}    {{2},{1,2},{1,2}}
                            {{2},{2},{1,2}}    {{3},{3},{1,2,3}}
                            {{1},{1},{1},{1}}  {{1},{1},{1},{2,3}}
                            {{1},{1},{2},{2}}  {{1},{1},{3},{2,3}}
                            {{1},{2},{2},{2}}  {{1},{2},{2},{1,2}}
                            {{1},{2},{3},{3}}  {{1},{2},{2},{3,4}}
                                               {{1},{2},{3},{2,3}}
                                               {{1},{3},{3},{2,3}}
                                               {{2},{2},{2},{1,2}}
                                               {{1},{1},{1},{1},{1}}
                                               {{1},{1},{2},{2},{2}}
                                               {{1},{2},{2},{2},{2}}
                                               {{1},{2},{2},{3},{3}}
                                               {{1},{2},{3},{3},{3}}
                                               {{1},{2},{3},{4},{4}}
		

Crossrefs

The case of unlabeled graphs is A140637, complement A134964.
Set multipartitions have ranks A302478, cf. A073576.
The case of labeled graphs is A367867, complement A133686.
With distinct edges we have A368094 connected A368409.
The complement with distinct edges is A368095, connected A368410.
Allowing repeated elements gives A368097, ranks A355529.
The complement allowing repeats is A368098, ranks A368100.
Factorizations of this type are counted by A368413, complement A368414.
The complement is counted by A368422.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute /@ Select[mpm[n],And@@UnsameQ@@@#&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}]

A330194 MM-number of the MM-normalization of the multiset of multisets with MM-number n.

Original entry on oeis.org

1, 2, 3, 4, 3, 6, 7, 8, 9, 6, 3, 12, 13, 14, 15, 16, 3, 18, 19, 12, 21, 6, 7, 24, 9, 26, 27, 28, 13, 30, 3, 32, 15, 6, 35, 36, 37, 38, 39, 24, 3, 42, 13, 12, 45, 14, 13, 48, 49, 18, 15, 52, 53, 54, 15, 56, 57, 26, 3, 60, 37, 6, 63, 64, 39, 30, 3, 12, 35, 70
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2019

Keywords

Comments

First differs from A330105 at a(35) = 35, A330105(35) = 69.
First differs from A330061 at a(175) = 175, A330061(175) = 207.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
We define the MM-normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the representative with the smallest MM-number.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}

Crossrefs

This sequence is idempotent and its image/fixed points are A330108.
Non-isomorphic multiset partitions are A007716.
MM-weight is A302242.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mmnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],mmnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[SortBy[brute[m,1],Map[Times@@Prime/@#&,#,{0,1}]&]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Table[Map[Times@@Prime/@#&,mmnorm[primeMS/@primeMS[n]],{0,1}],{n,100}]

Formula

a(n) <= n.

A368412 Number of non-isomorphic connected multiset partitions of weight n satisfying a strict version of the axiom of choice.

Original entry on oeis.org

0, 1, 2, 4, 11, 25, 75, 206, 650, 2049, 6895
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2023

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 11 multiset partitions:
  {{1}}  {{1,1}}  {{1,1,1}}    {{1,1,1,1}}
         {{1,2}}  {{1,2,2}}    {{1,1,2,2}}
                  {{1,2,3}}    {{1,2,2,2}}
                  {{2},{1,2}}  {{1,2,3,3}}
                               {{1,2,3,4}}
                               {{1},{1,2,2}}
                               {{1,2},{1,2}}
                               {{1,2},{2,2}}
                               {{1,3},{2,3}}
                               {{2},{1,2,2}}
                               {{3},{1,2,3}}
		

Crossrefs

The case of labeled graphs is A129271, connected case of A133686.
The complement for labeled graphs is A140638, connected case of A367867.
This is the connected case of A368098, ranks A368100.
Complement set-systems: A368409, connected case of A368094, ranks A367907.
For set-systems we have A368410, connected case of A368095, ranks A367906.
The complement is A368411, connected case of A368097, ranks A355529.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]], {s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[brute /@ Select[mpm[n],Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]!={}&]]],{n,0,6}]

A318287 Number of non-isomorphic strict multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 3, 4, 5, 3, 7, 4, 7, 9, 5, 5, 12, 6, 12, 14, 10, 8, 13, 12, 14, 14, 18, 10, 34
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(20) = 12 strict multiset partitions of {1,1,1,2,3}:
  {{1,1,1,2,3}}
  {{1},{1,1,2,3}}
  {{2},{1,1,1,3}}
  {{1,1},{1,2,3}}
  {{1,2},{1,1,3}}
  {{2,3},{1,1,1}}
  {{1},{2},{1,1,3}}
  {{1},{1,1},{2,3}}
  {{1},{1,2},{1,3}}
  {{2},{3},{1,1,1}}
  {{2},{1,1},{1,3}}
  {{1},{2},{3},{1,1}}
		

Crossrefs

Formula

a(n) = A318357(A181821(n)).
Previous Showing 41-50 of 72 results. Next