cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A325655 Triangle read by rows: T(n, k) = (1/4)*(2*(-1 + (-1)^n)*k - 2*k^2*n + n*(2 - (-1)^k - (-1)^n + 2*n^2)), with 0 <= k < n.

Original entry on oeis.org

1, 4, 4, 15, 14, 7, 32, 32, 24, 16, 65, 64, 53, 42, 21, 108, 108, 96, 84, 60, 36, 175, 174, 159, 144, 115, 86, 43, 256, 256, 240, 224, 192, 160, 112, 64, 369, 368, 349, 330, 293, 256, 201, 146, 73, 500, 500, 480, 460, 420, 380, 320, 260, 180, 100, 671, 670, 647, 624, 579, 534, 467, 400, 311, 222, 111
Offset: 1

Views

Author

Stefano Spezia, May 13 2019

Keywords

Comments

T(n, k) is the k-subdiagonal sum of the matrix M(n) whose permanent is A322277(n).

Examples

			The triangle T(n, k) begins:
---+-----------------------------
n\k|    0     1     2     3     4
---+-----------------------------
1  |    1
2  |    4     4
3  |   15    14     7
4  |   32    32    24    16
5  |   65    64    53    42    21
...
For n = 3 the matrix M(3) is
    1, 2, 3
    6, 5, 4
    7, 8, 9
and therefore T(3, 0) = 1 + 5 + 9 = 15, T(3, 1) = 6 + 8 = 14, and T(3, 2) = 7.
		

Crossrefs

Cf. A317614, A322277, A323723 (k = 1), A325656 (row sums), A325657 (diagonal).

Programs

  • GAP
    Flat(List([1..11], n->List([0..n-1], k->(1/4)*(2*(- 1 + (- 1)^n)*k - 2*k^2*n + n*(2 + (- 1)^(1+k) + (- 1)^(1 + n) + 2*n^2)))));
    
  • Magma
    [[(1/4)*(2*(- 1 + (- 1)^n)*k - 2*k^2*n + n*(2 + (- 1)^(1+k) + (- 1)^(1 + n) + 2*n^2)): k in [0..n-1]]: n in [1..11]];
    
  • Maple
    a:=(n, k)->(1/4)*(2*(- 1 + (- 1)^n)*k - 2*k^2*n + n*(2 + (- 1)^(1+k) + (- 1)^(1 + n) + 2*n^2)): seq(seq(a(n, k), k=0..n-1), n=1..11);
  • Mathematica
    T[n_, k_]:=(1/4)*(2*(- 1 + (- 1)^n)*k - 2*k^2*n + n*(2 + (- 1)^(1+k) + (- 1)^(1 + n) + 2*n^2)); Flatten[Table[T[n,k],{n,1,11},{k,0,n-1}]]
  • PARI
    T(n, k) = (1/4)*(2*(- 1 + (- 1)^n)*k - 2*k^2*n + n*(2 + (- 1)^(1+k) + (- 1)^(1 + n) + 2*n^2));
    tabl(nn) = for(n=1, nn, for(k=0, n-1, print1(T(n, k), ", ")); print);
    tabl(11) \\ yields sequence in triangular form

Formula

O.g.f.: x*(- 1 + 2*y + 3*y^2 - 2*y^3 + 2*x*(- 1 + y^2) + x^4*(- 1 + 3*y^2) + x^2*(- 6 + 6*y + 2*y^2 - 6*y^3) + x^3*(- 2 + 4*y + 2*y^2 - 4*y^3))/((- 1 + x)^4*(1 + x)^2*(- 1 + y)^3*(1 + y)).
E.g.f.: (1/4)*exp(- x - y)*(- exp(2*x)*x + exp(2*y)*(x + 2*y) + 2*exp(2*(x + y))*(3*x^2 + x^3 - y - x*(- 2 + y + y^2))).
T(n, k) = (1/2)*n*(n^2 - k^2) if n and k are both even; T(n, k) = (1/2)*n*(n^2 - k^2 + 1) if n is even and k is odd; T(n, k) = (1/2)*(n*(n^2 - k^2 + 1) - 2*k) if n is odd and k is even; T(n, k) = (1/2)*(n*(n^2 - k^2 + 2) - 2*k) if n and k are both odd.
Diagonal: T(n, n-1) = A325657(n).
1st column: T(n, 0) = A317614(n).

A340804 Triangle read by rows: T(n, k) = 1 + k*(n - 1) + (2*k - n - 1)*(k mod 2) with 0 < k <= n.

Original entry on oeis.org

1, 1, 3, 1, 5, 9, 1, 7, 11, 13, 1, 9, 13, 17, 25, 1, 11, 15, 21, 29, 31, 1, 13, 17, 25, 33, 37, 49, 1, 15, 19, 29, 37, 43, 55, 57, 1, 17, 21, 33, 41, 49, 61, 65, 81, 1, 19, 23, 37, 45, 55, 67, 73, 89, 91, 1, 21, 25, 41, 49, 61, 73, 81, 97, 101, 121, 1, 23, 27, 45, 53, 67, 79, 89, 105, 111, 131, 133
Offset: 1

Views

Author

Stefano Spezia, Jan 22 2021

Keywords

Comments

T(n, k) is the k-th diagonal element of an n X n square matrix M(n) formed by writing the numbers 1, ..., n^2 successively forward and backward along the rows in zig-zag pattern.
It includes exclusively all the odd numbers (A005408). Except the term 1, all the other odd numbers appear a finite number of times.

Examples

			1
1,  3
1,  5,  9,
1,  7, 11, 13
1,  9, 13, 17, 25
1, 11, 15, 21, 29, 31
1, 13, 17, 25, 33, 37, 49
...
		

Crossrefs

Cf. A005408, A317614 (row sums).
Cf. A000012 (1st column), A006010 (sum of the first n rows), A060747 (2nd column), A074147 (antidiagonals of M matrices), A241016 (row sums of M matrices), A317617 (column sums of M matrices), A322277 (permanent of M matrices), A323723 (subdiagonal sum of M matrices), A323724 (superdiagonal sum of M matrices).

Programs

  • Mathematica
    Table[1+k(n-1)+(2k-n-1)Mod[k,2],{n,12},{k,n}]//Flatten
  • PARI
    T(n, k) = 1 + k*(n - 1) + (2*k - n - 1)*(k % 2); \\ Michel Marcus, Jan 25 2021

Formula

O.g.f.: (1 + y - 3*y^2 + y^3 + x*(-1 - y + 5*y^2 + y^3))/((-1 + x)^2*(-1 + y)^2*(1+y)^2).
E.g.f.: exp(x - y)*(1 + x + 2*y + exp(2*y)*(1 + x*(-1 + 2*y)))/2.

A304487 a(n) = (3 + 2*n - 3*n^2 + 4*n^3 - 3*((-1 + n) mod 2))/6.

Original entry on oeis.org

1, 4, 15, 36, 73, 128, 207, 312, 449, 620, 831, 1084, 1385, 1736, 2143, 2608, 3137, 3732, 4399, 5140, 5961, 6864, 7855, 8936, 10113, 11388, 12767, 14252, 15849, 17560, 19391, 21344, 23425, 25636, 27983, 30468, 33097, 35872, 38799, 41880, 45121, 48524, 52095
Offset: 1

Views

Author

Stefano Spezia, Aug 17 2018

Keywords

Comments

a(n) is the trace of an n X n matrix A in which the entries are 1 through n^2, spiraling inward starting with 1 in the (1,1)-entry (proved).
The first three terms of a(n) coincide with those of A317614.

Examples

			For n = 1 the matrix A is
   1
with trace Tr(A) = a(1) = 1.
For n = 2 the matrix A is
   1, 2
   4, 3
with Tr(A) = a(2) = 4.
For n = 3 the matrix A is
   1, 2, 3
   8, 9, 4
   7, 6, 5
with Tr(A) = a(3) = 15.
For n = 4 the matrix A is
   1,  2,  3, 4
  12, 13, 14, 5
  11, 16, 15, 6
  10,  9,  8, 7
with Tr(A) = a(4) = 36.
		

Crossrefs

Cf. A126224 (determinant of the matrix A), A317298 (first differences).

Programs

  • GAP
    a_n:=List([1..43], n->(3 + 2*n - 3*n^2 + 4*n^3 - 3*RemInt(-1 + n, 2))/6);
    
  • GAP
    List([1..43],n->(3+2*n-3*n^2+4*n^3-3*((-1+n) mod 2))/6); # Muniru A Asiru, Sep 17 2018
  • Magma
    I:=[1,4,15,36,73]; [n le 5 select I[n] else 3*Self(n-1)-2*Self(n-2)-2*Self(n-3)+3*Self(n-4)-Self(n-5): n in [1..43]]; // Vincenzo Librandi, Aug 26 2018
    
  • Maple
    seq((3+2*n-3*n^2+4*n^3-3*modp((-1+n),2))/6,n=1..43); # Muniru A Asiru, Sep 17 2018
  • Mathematica
    Table[1/6 (3 + 2 n - 3 n^2 + 4 n^3 - 3 Mod[-1 + n, 2]), {n, 1, 43}] (* or *)
    CoefficientList[ Series[x*(1 + x + 5 x^2 + x^3)/((-1 + x)^4 (1 + x)), {x, 0, 43}], x] (* or *)
    LinearRecurrence[{3, -2, -2, 3, -1}, {1, 4, 15, 36, 73}, 43]
  • Maxima
    a(n):=(3 + 2*n - 3*n^2 + 4*n^3 - 3*mod(-1 + n, 2))/6$ makelist(a(n), n, 1, 43);
    
  • PARI
    Vec(x*(1 + x + 5*x^2 + x^3)/((-1 + x)^4*(1 + x)) + O(x^44))
    
  • PARI
    a(n) = (3 + 2*n - 3*n^2 + 4*n^3 - 3*((-1 + n)%2))/6
    

Formula

a(n) = A045991(n) - Sum_{k=2..n-1} A085046(k) for n > 2 (proved).
G.f.: x*(1 + x + 5 x^2 + x^3)/((-1 + x)^4 (1 + x)).
a(n) + a(n + 1) = A228958(2*n + 1).
From Colin Barker, Aug 17 2018: (Start)
a(n) = (2*n - 3*n^2 + 4*n^3) / 6 for n even.
a(n) = (3 + 2*n - 3*n^2 + 4*n^3) / 6 for n odd.
a(n) = 3*a(n - 1) - 2*a(n - 2) - 2*a(n - 3) + 3*a(n - 4) - a(n - 5) for n > 5.
(End)
E.g.f.: (1/12)*exp(-x)*(-3 + exp(2*x)*(3 + 6*x + 18*x^2 + 8*x^3)). - Stefano Spezia, Feb 10 2019

A322844 a(n) = (1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*(n mod 2)).

Original entry on oeis.org

0, 0, 5, 6, 68, 50, 333, 196, 1040, 540, 2525, 1210, 5220, 2366, 9653, 4200, 16448, 6936, 26325, 10830, 40100, 16170, 58685, 23276, 83088, 32500, 114413, 44226, 153860, 58870, 202725, 76880, 262400, 98736, 334373, 124950, 420228, 156066, 521645, 192660, 640400, 235340
Offset: 0

Views

Author

Stefano Spezia, Dec 28 2018

Keywords

Comments

Conjectures: (Start)
For n > 1, a(n) is the absolute value of the trace of the 2nd exterior power of an n X n square matrix M(n) defined as M[i,j,n] = j + n*(i-1) if i is odd and M[i,j,n] = n*i - j + 1 if i is even (see A317614). Equivalently, a(n) is the absolute value of the coefficient of the term [x^(n-2)] in the characteristic polynomial of the matrix M(n), or the absolute value of the sum of all principal minors of M(n) of size 2.
For k > 2, the trace of the k-th exterior power of the matrix M(n) is equal to zero.
(End)

Crossrefs

Cf. A317614 (trace of matrix M(n)).
Cf. A002415, A037270, A074147 (antidiagonals of M matrices), A241016 (row sums of M matrices), A317617 (column sums of M matrices), A322277 (permanent of matrix M(n)), A323723 (subdiagonal sum of M matrices), A323724 (superdiagonal sum of M matrices), A325516 (k-superdiagonal sum of M matrices), A325655 (k-subdiagonal sum of M matrices).

Programs

  • GAP
    Flat(List([0..50], n->(1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*(n mod 2))));
    
  • Magma
    [IsEven(n) select (1/4)*n^2*(1 + n^2) else (1/12)*(- 1 + n)*n^2*(1 + n): n in [0..50]];
    
  • Maple
    a:=n->(1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*modp(n,2)): seq(a(n), n=0..50);
  • Mathematica
    a[n_]:=(1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*Mod[n,2]); Array[a,50,0]
    LinearRecurrence[{0,5,0,-10,0,10,0,-5,0,1},{0,0,5,6,68,50,333,196,1040,540},50] (* Harvey P. Dale, Aug 23 2025 *)
  • Maxima
    a(n):=(1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*mod(n,2))$ makelist(a(n), n, 0, 50);
    
  • PARI
    a(n) = (1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*(n % 2));
    
  • PARI
    a(n) = abs(polcoeff(charpoly(matrix(n, n, i, j, if (i %2, j + n*(i-1), n*i - j + 1))), n-2)); \\ Michel Marcus, Feb 06 2019
    
  • Python
    [int(n**2*(3*(1 + n**2) - 2*(2 + n**2)*pow(n, 1, 2))/12) for n in range(0,50)]

Formula

O.g.f.: -x^2*(5 + 6*x + 43*x^2 + 20*x^3 + 43*x^4 + 6*x^5 + 5*x^6)/((-1 + x)^5*(1 + x)^5).
E.g.f.: (1/(12*x^2))*exp(-x)*(24 - 60*exp(x) + 21*x + 9*x^2 + 2*x^3 + x^4 + exp(2*x)*(36 - 33*x + 15*x^2 - 4*x^3 + 2*x^4)).
a(n) = (1/4)*n^2*(1 + n^2) for n even.
a(n) = (1/2)*A037270(n) for n even.
a(n) = (1/12)*(-1 + n)*n^2*(1 + n) for n odd.
a(n) = A002415(n) for n odd.
a(2*n+1) = 5*a(2*n-1) - 10*a(2*n-3) + 10*a(2*n-5) - 5*a(2*n-7) + a(2*n-9), for n > 4.
a(2*n) = 5*a(2*n-2) - 10*a(2*n-4) + 10*a(2*n-6) - 5*a(2*n-8) + a(2*n-10), for n > 4.
O.g.f. for a(2*n+1): -x*(2*(3 + 10*x + 3*x^2))/(-1 + x)^5.
O.g.f. for a(2*n): x*(-5 - 43*x - 43*x^2 - 5*x^3)/(-1 + x)^5.
E.g.f. for a(2*n+1): (1/12)*(6*x*cosh(sqrt(x)) + sqrt(x)*(6 + x)*sinh(sqrt(x))).
E.g.f. for a(2*n): (1/4)*(x*(8 + x)*cosh(sqrt(x)) + 2*sqrt(x)*(1 + 3*x)*sinh(sqrt(x))).
Sum_{k>=1} 1/a(2*k) = (1/6)*(12 + Pi^2 - 6*Pi*coth(Pi/2)) = 0.21955691692893092525407699347398665248691900...
Sum_{k>=1} 1/a(2*k+1) = 3*(5 - Pi^2/2) = 0.1955933983659620717482635001857732970...
Sum_{k>=2} 1/a(k) = 17 - (4*Pi^2)/3 - Pi*coth(Pi/2) = 0.415150315294892997002340493659759949516369894...

A349107 a(n) is the permanent of the n X n matrix A(n) that is defined as A[i,j,n] = n - abs((n + 1)/2 - i) - abs((n + 1)/2 - j).

Original entry on oeis.org

1, 1, 2, 22, 292, 9084, 314736, 19224816, 1267665984, 127896194880, 13696865136000, 2061743814864000, 325942368613966080, 68443327006163424000, 14983681934750599526400, 4184458128589740299827200, 1211736134642288777186918400, 434251427188367439407838412800, 160701529762439051943130553548800
Offset: 0

Views

Author

Stefano Spezia, Nov 08 2021

Keywords

Comments

A(n) is an n X n matrix whose elements start from 1 at the corners and get higher, the more they are at the center (see the examples).
det(A(1)) = 1 and det(A(n)) = 0 for n > 1.

Examples

			For n = 5 the matrix A(5) is
   1, 2, 3, 2, 1
   2, 3, 4, 3, 2
   3, 4, 5, 4, 3
   2, 3, 4, 3, 2
   1, 2, 3, 2, 1
with permanent a(5) = 9084.
For n = 6 the matrix A(6) is
   1, 2, 3, 3, 2, 1
   2, 3, 4, 4, 3, 2
   3, 4, 5, 5, 4, 3
   3, 4, 5, 5, 4, 3
   2, 3, 4, 4, 3, 2
   1, 2, 3, 3, 2, 1
with permanent a(6) = 314736.
		

Crossrefs

Cf. A000982 (trace of matrix A(n)), A317614 (elements sum of matrix A(n)), A349108.

Programs

  • Mathematica
    A[i_, j_, n_] := n - Abs[(n + 1)/2 - i] - Abs[(n + 1)/2 - j]; a[n_]:=Permanent[Table[A[i,j,n],{i,n},{j,n}]]; Array[a,18]
  • PARI
    a(n) = matpermanent(matrix(n, n, i, j, n - abs((n + 1)/2 - i) - abs((n + 1)/2 - j))); \\ Michel Marcus, Nov 08 2021

Formula

a(2*n) = A349108(2*n).

A350050 a(n) = (2*n^4 - 6*(-1)^n*n^2 - 2*n^2 + 3*(-1)^n - 3)/96.

Original entry on oeis.org

0, 0, 0, 2, 4, 14, 24, 52, 80, 140, 200, 310, 420, 602, 784, 1064, 1344, 1752, 2160, 2730, 3300, 4070, 4840, 5852, 6864, 8164, 9464, 11102, 12740, 14770, 16800, 19280, 21760, 24752, 27744, 31314, 34884, 39102, 43320, 48260, 53200, 58940, 64680, 71302, 77924, 85514
Offset: 0

Views

Author

Stefano Spezia, Dec 11 2021

Keywords

Comments

Definitions: (Start)
The k-th exterior power of a vector space V of dimension n is a vector subspace spanned by elements, called k-vectors, that are the exterior product of k vectors v_i in V.
Given a square matrix A that describes the vectors v_i in terms of a basis of V, the k-th exterior power of the matrix A is the matrix that represents the k-vectors in terms of the basis of V. (End)
Conjectures: (Start)
For n > 1, a(n) is the absolute value of the trace of the 2nd exterior power of an n X n square matrix A(n) defined as A[i,j,n] = n - abs((n + 1)/2 - j) - abs((n + 1)/2 - i) (see A349107). Equivalently, a(n) is the absolute value of the coefficient of the term [x^(n-2)] in the characteristic polynomial of the matrix A(n), or the absolute value of the sum of all principal minors of A(n) of size 2.
For k > 2, the trace of the k-th exterior power of the matrix A(n) is equal to zero. (End)
The same conjectures hold for an n X n square matrix A(n) defined as A[i,j,n] = (n mod 2) + abs((n + 1)/2 - j) + abs((n + 1)/2 - i) (see A349108).

Crossrefs

Cf. A000982 (trace of matrix A(n)), A317614 (elements sum of matrix A(n)), A349107, A349108.

Programs

  • Mathematica
    Table[(2*n^4-6*(-1)^n*n^2-2*n^2+3*(-1)^n-3)/96,{n,0,45}]
  • PARI
    a(n) = (2*n^4 - 6*(-1)^n*n^2 - 2*n^2 + 3*(-1)^n - 3)/96 \\ Winston de Greef, Jan 28 2024

Formula

O.g.f.: 2*x^3*(1 + x^2)/((1 - x)^5*(1 + x)^3).
E.g.f.: (x*(x^3 + 6*x^2 + 3*x + 3)*cosh(x) + (x^4 + 6*x^3 + 9*x^2 - 3*x - 3)*sinh(x))/48.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n > 7.
a(n) = A338429(n-2)/2 for n > 2.
a(2*n-1) = 2*A006325(n).
a(2*n) = A112742(n).
Sum_{n>2} 1/a(n) = (45 - 2*Pi^2 - 4*sqrt(3)*Pi*tanh(sqrt(3)*Pi/2))/4 = 0.920755957767250147865...

A325517 a(n) = n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24.

Original entry on oeis.org

0, 1, 6, 24, 64, 145, 282, 504, 832, 1305, 1950, 2816, 3936, 5369, 7154, 9360, 12032, 15249, 19062, 23560, 28800, 34881, 41866, 49864, 58944, 69225, 80782, 93744, 108192, 124265, 142050, 161696, 183296, 207009, 232934, 261240, 292032, 325489, 361722, 400920, 443200
Offset: 0

Views

Author

Stefano Spezia, May 07 2019

Keywords

Comments

For n > 0, a(n) is the n-th row sum of the triangle A325516.

Crossrefs

Programs

  • GAP
    Flat(List([0..50], n->n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24));
    
  • Magma
    [n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24: n in [0..50]];
    
  • Maple
    a:=n->n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24: seq(a(n), n=0..50);
  • Mathematica
    a[n_]:=n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24; Array[a,50,0]
  • PARI
    a(n) = n*((2*n + 1)*(2*n^2 + 2*n + 3) - 3*(-1)^n)/24;

Formula

O.g.f.: x*(1 + 3*x + 7*x^2 + 3*x^3 + 2*x^4)/((1 - x)^5*(1 + x)^2).
E.g.f.: (1/24)*exp(-x)*x*(3 + 21*exp(2*x) + 54*exp(2*x)*x + 30*exp(2*x)*x^2 + 4*exp(2*x)*x^3).
a(n) = 3*a(n-1) - a(n-2) - 5*a(n-3) + 5*a(n-4) + a(n-5) - 3*a(n-6) + a(n-7) for n > 6.
a(n) = n^2*(2*n^2 + 3*n + 4)/12 if n is even.
a(n) = n*(n + 1)*(2*n^2 + n + 3)/12 if n is odd.
a(n) = n*A131941(n). - Stefano Spezia, Dec 21 2021

A325656 a(n) = (1/24)*n*((4*n + 3)*(2*n^2 + 1) - 3*(-1)^n).

Original entry on oeis.org

0, 1, 8, 36, 104, 245, 492, 896, 1504, 2385, 3600, 5236, 7368, 10101, 13524, 17760, 22912, 29121, 36504, 45220, 55400, 67221, 80828, 96416, 114144, 134225, 156832, 182196, 210504, 242005, 276900, 315456, 357888, 404481, 455464, 511140, 571752, 637621, 709004, 786240
Offset: 0

Views

Author

Stefano Spezia, May 13 2019

Keywords

Comments

For n > 0, a(n) is the n-th row sum of the triangle A325655.

Crossrefs

Programs

  • GAP
    Flat(List([0..50], n->(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3)));
    
  • Magma
    [(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3): n in [0..50]];
    
  • Maple
    a:=n->(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3): seq(a(n), n=0..50);
  • Mathematica
    a[n_]:=(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3); Array[a,50,0]
  • PARI
    a(n) = (1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3);

Formula

O.g.f.: -x*(1 + 5*x + 13*x*2 + 9*x^3 + 4*x^4)/((-1 + x)^5*(1 + x)^2).
E.g.f.: (1/24)*exp(-x)*x*(3 + 21*exp(2*x) + 78*exp(2*x)*x + 54*exp(2*x)*x^2 + 8*exp(2*x)*x*3).
a(n) = a(n) = 3*a(n-1) - a(n-2) - 5*a(n-3) + 5*a(n-4) + a(n-5) - 3*a(n-6) + a(n-7) for n > 6.
a(n) = (1/12)*n^2*(4*n^2 + 3*n + 2) if n is even.
a(n) = (1/12)*n*(n + 1)*(4*n^2 - n + 3) if n is odd.
a(n) = n*A173722(2*n). - Stefano Spezia, Dec 21 2021

A335648 Partial sums of A006010.

Original entry on oeis.org

0, 1, 6, 26, 78, 195, 420, 820, 1476, 2501, 4026, 6222, 9282, 13447, 18984, 26216, 35496, 47241, 61902, 80002, 102102, 128843, 160908, 199068, 244140, 297037, 358722, 430262, 512778, 607503, 715728, 838864, 978384, 1135889, 1313046, 1511658, 1733598, 1980883, 2255604
Offset: 0

Views

Author

Stefano Spezia, Jun 15 2020

Keywords

Crossrefs

Cf. A006010 (1st differences), A186424 (3rd differences), A317614 (2nd differences).

Programs

  • Magma
    I:=[0, 1, 6, 26, 78, 195, 420, 820]; [n le 8 select I[n] else 4*Self(n-1)-4*Self(n-2)-4*Self(n-3)+10*Self(n-4)-4*Self(n-5)-4*Self(n-6)+4*Self(n-7)-Self(n-8): n in [1..39]];
    
  • Mathematica
    Table[(1+n)(5-5(-1)^n+8n+12n^2+8n^3+2n^4)/80,{n,0,38}]
  • PARI
    a(n) = (1 + n)*(5 - 5*(-1)^n + 8*n + 12*n^2 + 8*n^3 + 2*n^4)/80;
    
  • Sage
    (x*(1+2*x+6*x^2+2*x^3+x^4)/((1-x)^6*(1+x)^2)).series(x, 39).coefficients(x, False)

Formula

a(n) = (1 + n)*(5 - 5*(-1)^n + 8*n + 12*n^2 + 8*n^3 + 2*n^4)/80.
O.g.f.: x*(1 + 2*x + 6*x^2 + 2*x^3 + x^4)/((1 - x)^6*(1 + x)^2).
E.g.f.: (cosh(x) - sinh(x))*(-5 + 5*x + (5 + 65*x + 180*x^2 + 130*x^3 + 30*x^4 + 2*x^5)*(cosh(2*x) + sinh(2*x)))/80.
a(n) = 4*a(n-1) - 4*a(n-2) - 4*a(n-3) + 10*a(n-4) - 4*a(n-5) - 4*a(n-6) + 4*a(n-7) - a(n-8) for n > 7.
a(2*n-1) = n*A053755(n)/5 for n > 0.
a(2*n) = n*A005408(n)*A059722(n-1)/5.
a(2*n+1) - a(2*n-1) = A001844(n)^2 = A007204(n) for n > 0.
a(2*n) - a(2*n-2) = 2*A000290(n)*A058331(n) for n > 0.

A374708 Triangle T read by rows: T(n,k) = (n - k)*n*(4*n^2 - 4*n*k + 2*k^2 - 1 + (-1)^k)/4, with 0 <= k < n.

Original entry on oeis.org

1, 16, 4, 81, 36, 15, 256, 144, 80, 32, 625, 400, 255, 140, 65, 1296, 900, 624, 396, 240, 108, 2401, 1764, 1295, 896, 609, 364, 175, 4096, 3136, 2400, 1760, 1280, 864, 544, 256, 6561, 5184, 4095, 3132, 2385, 1728, 1215, 756, 369, 10000, 8100, 6560, 5180, 4080, 3100, 2320, 1620, 1040, 500
Offset: 1

Views

Author

Stefano Spezia, Jul 17 2024

Keywords

Comments

T(n, k) is the k-th super- and subdiagonal sum of the Hankel matrix M(n) whose permanent is A374668(n).

Examples

			n\k|    0    1    2    3    4    5
---+------------------------------
1  |    1
2  |   16    4
3  |   81   36   15
4  |  256  144   80   32
5  |  625  400  255  140   65
6  | 1296  900  624  396  240  108
      ...
For n = 3 the matrix M is
  [ 1,  4, 15]
  [ 4, 15, 32]
  [15, 32, 65]
and therefore T(3, 0) = 1 + 15 + 65 = 81, T(3, 1) = 4 + 32 = 36, and T(3, 2) = 15.
		

Crossrefs

Cf. A317614 (diagonal), A374668.
Cf. A000583 (k=0), A035287 (k=1), A123865, A374709 (row sums).

Programs

  • Mathematica
    T[n_,k_]:=(n-k)*n*(4*n^2 - 4*n*k+2*k^2-1+(-1)^k)/4; Table[T[n,k],{n,10},{k,0,n-1}]//Flatten

Formula

O.g.f.: x*(1 - 4*x^8*y^5 + x*(11 + 2*y) - x^7*y^4*(7 + 16*y) - x^2*(-11 + 6*y - 6*y^2) - x^5*y^2*(2 - 46*y - 3*y^2) - x^6*y^3*(-2 - 27*y + 4*y^2) - x^3*(-1 + 18*y + 38*y^2 - 2*y^3) - x^4*y*(2 + 14*y + 2*y^2 - y^3))/((1 - x)^5*(1 - x*y)^4*(1 + x*y)^2).
T(n,2) = A123865(n-1) for n > 1.
Previous Showing 11-20 of 23 results. Next