cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A330471 Number of series/singleton-reduced rooted trees on strongly normal multisets of size n.

Original entry on oeis.org

1, 1, 2, 9, 69, 623, 7803, 110476, 1907428
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2019

Keywords

Comments

A multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.
A series/singleton-reduced rooted tree on a multiset m is either the multiset m itself or a sequence of series/singleton-reduced rooted trees, one on each part of a multiset partition of m that is neither minimal (all singletons) nor maximal (only one part). This is a multiset generalization of singleton-reduced phylogenetic trees (A000311).

Examples

			The a(0) = 1 through a(3) = 9 trees:
  ()  (1)  (11)  (111)
           (12)  (112)
                 (123)
                 ((1)(11))
                 ((1)(12))
                 ((1)(23))
                 ((2)(11))
                 ((2)(13))
                 ((3)(12))
The a(4) = 69 trees, with singleton leaves (x) replaced by just x:
  (1111)      (1112)      (1122)      (1123)      (1234)
  (1(111))    (1(112))    (1(122))    (1(123))    (1(234))
  (11(11))    (11(12))    (11(22))    (11(23))    (12(34))
  ((11)(11))  (12(11))    (12(12))    (12(13))    (13(24))
  (1(1(11)))  (2(111))    (2(112))    (13(12))    (14(23))
              ((11)(12))  (22(11))    (2(113))    (2(134))
              (1(1(12)))  ((11)(22))  (23(11))    (23(14))
              (1(2(11)))  (1(1(22)))  (3(112))    (24(13))
              (2(1(11)))  ((12)(12))  ((11)(23))  (3(124))
                          (1(2(12)))  (1(1(23)))  (34(12))
                          (2(1(12)))  ((12)(13))  (4(123))
                          (2(2(11)))  (1(2(13)))  ((12)(34))
                                      (1(3(12)))  (1(2(34)))
                                      (2(1(13)))  ((13)(24))
                                      (2(3(11)))  (1(3(24)))
                                      (3(1(12)))  ((14)(23))
                                      (3(2(11)))  (1(4(23)))
                                                  (2(1(34)))
                                                  (2(3(14)))
                                                  (2(4(13)))
                                                  (3(1(24)))
                                                  (3(2(14)))
                                                  (3(4(12)))
                                                  (4(1(23)))
                                                  (4(2(13)))
                                                  (4(3(12)))
		

Crossrefs

The case with all atoms different is A000311.
The case with all atoms equal is A196545.
The orderless version is A316652.
The unlabeled version is A330470.
The case where the leaves are sets is A330628.
The version for just normal (not strongly normal) is A330654.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    mtot[m_]:=Prepend[Join@@Table[Tuples[mtot/@p],{p,Select[mps[m],Length[#]>1&&Length[#]
    				

A318848 Number of complete tree-partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 4, 12, 9, 12, 17, 34, 29, 44, 26, 92, 90, 277, 68, 171, 93, 806, 144, 197, 309, 581, 269, 2500, 428, 7578, 236, 631, 1025, 869, 954, 24198, 3463, 2402, 712, 75370, 1957, 243800, 1040, 3200, 11705, 776494, 1612, 4349, 2358, 8862, 3993, 2545777
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A tree-partition of m is either m itself or a sequence of tree-partitions, one of each part of a multiset partition of m with at least two parts. A tree-partition is complete if the leaves are all multisets of length 1.

Examples

			The a(12) = 17 complete tree-partitions of {1,1,2,3} with the leaves (x) replaced with just x:
  (1(1(23)))
  (1(2(13)))
  (1(3(12)))
  (2(1(13)))
  (2(3(11)))
  (3(1(12)))
  (3(2(11)))
  ((11)(23))
  ((12)(13))
  (1(123))
  (2(113))
  (3(112))
  (11(23))
  (12(13))
  (13(12))
  (23(11))
  (1123)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    allmsptrees[m_]:=Prepend[Join@@Table[Tuples[allmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Length[Select[allmsptrees[nrmptn[n]],FreeQ[#,{?AtomQ,_}]&]],{n,20}]

Formula

a(n) = A281119(A181821(n)).
a(prime(n)) = A196545(n)
a(2^n) = A000311(n).

Extensions

More terms from Jinyuan Wang, Jun 26 2020

A330668 Number of non-isomorphic balanced reduced multisystems of weight n whose leaves (which are multisets of atoms) are all sets.

Original entry on oeis.org

1, 1, 1, 3, 22, 204, 2953
Offset: 0

Views

Author

Gus Wiseman, Dec 27 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. The weight of an atom is 1, while the weight of a multiset is the sum of weights of its elements.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 22 multisystems:
  {1}  {1,2}  {1,2,3}      {1,2,3,4}
              {{1},{1,2}}  {{1},{1,2,3}}
              {{1},{2,3}}  {{1,2},{1,2}}
                           {{1,2},{1,3}}
                           {{1},{2,3,4}}
                           {{1,2},{3,4}}
                           {{1},{1},{1,2}}
                           {{1},{1},{2,3}}
                           {{1},{2},{1,2}}
                           {{1},{2},{1,3}}
                           {{1},{2},{3,4}}
                           {{{1}},{{1},{1,2}}}
                           {{{1}},{{1},{2,3}}}
                           {{{1,2}},{{1},{1}}}
                           {{{1}},{{2},{1,2}}}
                           {{{1,2}},{{1},{2}}}
                           {{{1}},{{2},{1,3}}}
                           {{{1,2}},{{1},{3}}}
                           {{{1}},{{2},{3,4}}}
                           {{{1,2}},{{3},{4}}}
                           {{{2}},{{1},{1,3}}}
                           {{{2,3}},{{1},{1}}}
		

Crossrefs

The case with all atoms different is A318813.
The version where the leaves are multisets is A330474.
The tree version is A330626.
The maximum-depth case is A330677.
Unlabeled series-reduced rooted trees whose leaves are sets are A330624.

A330666 Number of non-isomorphic balanced reduced multisystems whose degrees (atom multiplicities) are the weakly decreasing prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 2, 10, 11, 20, 15, 90, 51, 80, 6, 468, 93, 2910, 80, 521, 277, 20644, 80, 334, 1761, 393, 521, 165874, 1374
Offset: 1

Views

Author

Gus Wiseman, Dec 30 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(9) = 10 multisystems (commas and outer brackets elided):
    1  11  12  111      112      1111            123      1122
               {1}{11}  {1}{12}  {1}{111}        {1}{23}  {1}{122}
                        {2}{11}  {11}{11}                 {11}{22}
                                 {1}{1}{11}               {12}{12}
                                 {{1}}{{1}{11}}           {1}{1}{22}
                                 {{11}}{{1}{1}}           {1}{2}{12}
                                                          {{1}}{{1}{22}}
                                                          {{11}}{{2}{2}}
                                                          {{1}}{{2}{12}}
                                                          {{12}}{{1}{2}}
Non-isomorphic representatives of the a(12) = 15 multisystems:
  {1,1,2,3}
  {{1},{1,2,3}}
  {{1,1},{2,3}}
  {{1,2},{1,3}}
  {{2},{1,1,3}}
  {{1},{1},{2,3}}
  {{1},{2},{1,3}}
  {{2},{3},{1,1}}
  {{{1}},{{1},{2,3}}}
  {{{1,1}},{{2},{3}}}
  {{{1}},{{2},{1,3}}}
  {{{1,2}},{{1},{3}}}
  {{{2}},{{1},{1,3}}}
  {{{2}},{{3},{1,1}}}
  {{{2,3}},{{1},{1}}}
		

Crossrefs

The labeled version is A318846.
The maximum-depth version is A330664.
Unlabeled balanced reduced multisystems by weight are A330474.
The case of constant or strict atoms is A318813.

Formula

a(2^n) = a(prime(n)) = A318813(n).

A330727 Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose degrees (atom multiplicities) are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 1, 3, 1, 7, 7, 1, 5, 5, 1, 5, 9, 5, 1, 9, 11, 1, 9, 28, 36, 16, 1, 10, 24, 16, 1, 14, 38, 27, 1, 13, 18, 1, 13, 69, 160, 164, 61, 1, 24, 79, 62, 1, 20, 160, 580, 1022, 855, 272, 1, 19, 59, 45, 1, 27, 138, 232, 123, 1, 17, 77, 121, 61
Offset: 2

Views

Author

Gus Wiseman, Jan 04 2020

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			Triangle begins:
   {}
   1
   1
   1   1
   1   2
   1   3   2
   1   3
   1   7   7
   1   5   5
   1   5   9   5
   1   9  11
   1   9  28  36  16
   1  10  24  16
   1  14  38  27
   1  13  18
   1  13  69 160 164  61
   1  24  79  62
For example, row n = 12 counts the following multisystems:
  {1,1,2,3}  {{1},{1,2,3}}    {{{1}},{{1},{2,3}}}
             {{1,1},{2,3}}    {{{1,1}},{{2},{3}}}
             {{1,2},{1,3}}    {{{1}},{{2},{1,3}}}
             {{2},{1,1,3}}    {{{1,2}},{{1},{3}}}
             {{3},{1,1,2}}    {{{1}},{{3},{1,2}}}
             {{1},{1},{2,3}}  {{{1,3}},{{1},{2}}}
             {{1},{2},{1,3}}  {{{2}},{{1},{1,3}}}
             {{1},{3},{1,2}}  {{{2}},{{3},{1,1}}}
             {{2},{3},{1,1}}  {{{2,3}},{{1},{1}}}
                              {{{3}},{{1},{1,2}}}
                              {{{3}},{{2},{1,1}}}
		

Crossrefs

Row sums are A318846.
Final terms in each row are A330728.
Row prime(n) is row n of A330784.
Row 2^n is row n of A008826.
Row n is row A181821(n) of A330667.
Column k = 3 is A318284(n) - 2 for n > 2.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				

Formula

T(2^n,k) = A008826(n,k).

A318847 Number of tree-partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 12, 8, 28, 20, 32, 38, 112, 76, 116, 58, 352, 236, 1296, 176, 540, 288, 4448, 374, 612, 1144, 1812, 824, 16640, 1316, 59968, 612, 2336, 4528, 3208, 2924, 231168, 18320, 10632, 2168, 856960, 7132, 3334400, 3776, 11684, 74080, 12679424, 4919, 19192
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A tree-partition of m is either m itself or a sequence of tree-partitions, one of each part of a multiset partition of m with at least two parts.

Examples

			The a(6) = 6 tree-partitions of {1,1,2}:
  (112)
  ((1)(12))
  ((2)(11))
  ((1)(1)(2))
  ((1)((1)(2)))
  ((2)((1)(1)))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    allmsptrees[m_]:=Prepend[Join@@Table[Tuples[allmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Length[allmsptrees[nrmptn[n]]],{n,20}]

Formula

a(n) = A281118(A181821(n)).
a(prime(n)) = A289501(n).
a(2^n) = A005804(n).

Extensions

More terms from Jinyuan Wang, Jun 26 2020

A330667 Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose atoms are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 1, 1, 0, 1, 0, 1, 3, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 0, 1, 1, 5, 5, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 0, 1, 1, 5, 9, 5, 0, 1, 0, 1, 0, 1, 0, 1, 7, 7, 0, 1, 1, 0, 1, 0, 1, 5, 5, 0, 1, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
  {}
  1
  1
  1 0
  1
  1 0
  1
  1 1 0
  1 0
  1 0
  1
  1 2 0
  1
  1 0
  1 0
  1 3 2 0
  1
  1 2 0
  1
  1 2 0
Row n = 84 counts the following multisystems (commas elided):
  {1124}  {{1}{124}}    {{{1}}{{1}{24}}}
          {{11}{24}}    {{{11}}{{2}{4}}}
          {{12}{14}}    {{{1}}{{2}{14}}}
          {{2}{114}}    {{{12}}{{1}{4}}}
          {{4}{112}}    {{{1}}{{4}{12}}}
          {{1}{1}{24}}  {{{14}}{{1}{2}}}
          {{1}{2}{14}}  {{{2}}{{1}{14}}}
          {{1}{4}{12}}  {{{2}}{{4}{11}}}
          {{2}{4}{11}}  {{{24}}{{1}{1}}}
                        {{{4}}{{1}{12}}}
                        {{{4}}{{2}{11}}}
		

Crossrefs

Row lengths are A001222.
Row sums are A318812.
The last nonzero term of row n is A330665(n).
Column k = 2 is 0 if n is prime; otherwise it is A001055(n) - 2.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    totfac[n_,k_]:=If[k==1,1,Sum[totfac[Times@@Prime/@f,k-1],{f,Select[facs[n],1
    				

A323719 Array read by antidiagonals upwards where A(n, k) is the number of orderless factorizations of n with k - 1 levels of parentheses.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 3, 1, 4, 1, 6, 1, 1, 1, 1, 2, 6, 1, 5, 1, 7, 1, 1, 1, 1, 2, 3, 10, 1, 6, 1, 8, 1, 1, 1, 1, 1, 3, 4, 15, 1, 7, 1, 9, 1, 1, 1, 1, 4, 1, 4, 5, 21, 1, 8, 1, 10, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2019

Keywords

Comments

An orderless factorization of n with k > 1 levels of parentheses is any multiset partition of an orderless factorization of n with k - 1 levels of parentheses. If k = 1 it is just an orderless factorization of n into factors > 1.

Examples

			Array begins:
       k=0  k=1  k=2  k=3  k=4  k=5  k=6  k=7  k=8  k=9  k=10 k=11 k=12
   n=1: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=2: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=3: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=4: 1    2    3    4    5    6    7    8    9   10   11   12   13
   n=5: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=6: 1    2    3    4    5    6    7    8    9   10   11   12   13
   n=7: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=8: 1    3    6   10   15   21   28   36   45   55   66   78   91
   n=9: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=10: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=11: 1    1    1    1    1    1    1    1    1    1    1    1    1
  n=12: 1    4    9   16   25   36   49   64   81  100  121  144  169
  n=13: 1    1    1    1    1    1    1    1    1    1    1    1    1
  n=14: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=15: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=16: 1    5   14   30   55   91  140  204  285  385  506  650  819
  n=17: 1    1    1    1    1    1    1    1    1    1    1    1    1
  n=18: 1    4    9   16   25   36   49   64   81  100  121  144  169
The A(12,3) = 16 orderless factorizations of 12 with 2 levels of parentheses:
  ((2*2*3))          ((2*6))      ((3*4))      ((12))
  ((2)*(2*3))        ((2)*(6))    ((3)*(4))
  ((3)*(2*2))        ((2))*((6))  ((3))*((4))
  ((2))*((2*3))
  ((2)*(2)*(3))
  ((3))*((2*2))
  ((2))*((2)*(3))
  ((3))*((2)*(2))
  ((2))*((2))*((3))
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    lev[n_,k_]:=If[k==0,{n},Join@@Table[Union[Sort/@Tuples[lev[#,k-1]&/@fac]],{fac,facs[n]}]];
    Table[Length[lev[sum-k,k]],{sum,12},{k,0,sum-1}]

A330784 Triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k with n equal atoms.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 9, 5, 1, 9, 28, 36, 16, 1, 13, 69, 160, 164, 61, 1, 20, 160, 580, 1022, 855, 272, 1, 28, 337, 1837, 4996, 7072, 4988, 1385
Offset: 2

Views

Author

Gus Wiseman, Jan 03 2020

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.

Examples

			Triangle begins:
    1
    1    1
    1    3    2
    1    5    9    5
    1    9   28   36   16
    1   13   69  160  164   61
    1   20  160  580 1022  855  272
    1   28  337 1837 4996 7072 4988 1385
Row n = 5 counts the following multisystems (strings of 1's are replaced by their lengths):
  5  {1,4}      {{1},{1,3}}      {{{1}},{{1},{1,2}}}
     {2,3}      {{1},{2,2}}      {{{1,1}},{{1},{2}}}
     {1,1,3}    {{2},{1,2}}      {{{1}},{{2},{1,1}}}
     {1,2,2}    {{3},{1,1}}      {{{1,2}},{{1},{1}}}
     {1,1,1,2}  {{1},{1,1,2}}    {{{2}},{{1},{1,1}}}
                {{1,1},{1,2}}
                {{2},{1,1,1}}
                {{1},{1},{1,2}}
                {{1},{2},{1,1}}
		

Crossrefs

Row sums are A318813.
Column k = 3 is A007042.
Column k = 4 is A001970(n) - 3*A000041(n) + 3.
Column k = n is A000111.
Row n is row prime(n) of A330727.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				

Formula

T(n,3) = A000041(n) - 2.
T(n,4) = A001970(n) - 3 * A000041(n) + 3.

A330936 Number of nontrivial factorizations of n into factors > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 5, 0, 0, 1, 2, 0, 3, 0, 5, 0, 0, 0, 7, 0, 0, 0, 5, 0, 3, 0, 2, 2, 0, 0, 10, 0, 2, 0, 2, 0, 5, 0, 5, 0, 0, 0, 9, 0, 0, 2, 9, 0, 3, 0, 2, 0, 3, 0, 14, 0, 0, 2, 2, 0, 3, 0, 10, 3, 0, 0, 9, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 04 2020

Keywords

Comments

The trivial factorizations of a number are (1) the case with only one factor, and (2) the factorization into prime numbers.

Examples

			The a(n) nontrivial factorizations of n = 8, 12, 16, 24, 36, 48, 60, 72:
  (2*4)  (2*6)  (2*8)    (3*8)    (4*9)    (6*8)      (2*30)    (8*9)
         (3*4)  (4*4)    (4*6)    (6*6)    (2*24)     (3*20)    (2*36)
                (2*2*4)  (2*12)   (2*18)   (3*16)     (4*15)    (3*24)
                         (2*2*6)  (3*12)   (4*12)     (5*12)    (4*18)
                         (2*3*4)  (2*2*9)  (2*3*8)    (6*10)    (6*12)
                                  (2*3*6)  (2*4*6)    (2*5*6)   (2*4*9)
                                  (3*3*4)  (3*4*4)    (3*4*5)   (2*6*6)
                                           (2*2*12)   (2*2*15)  (3*3*8)
                                           (2*2*2*6)  (2*3*10)  (3*4*6)
                                           (2*2*3*4)            (2*2*18)
                                                                (2*3*12)
                                                                (2*2*2*9)
                                                                (2*2*3*6)
                                                                (2*3*3*4)
		

Crossrefs

Positions of nonzero terms are A033942.
Positions of 1's are A030078.
Positions of 2's are A054753.
Nontrivial integer partitions are A007042.
Nontrivial set partitions are A008827.
Nontrivial divisors are A070824.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[DeleteCases[Rest[facs[n]],{_}]],{n,100}]

Formula

For prime n, a(n) = 0; for nonprime n, a(n) = A001055(n) - 2.
Previous Showing 21-30 of 30 results.