cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 65 results. Next

A321552 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^7.

Original entry on oeis.org

1, 127, 2188, 16255, 78126, 277876, 823544, 2080639, 4785157, 9922002, 19487172, 35565940, 62748518, 104590088, 170939688, 266321791, 410338674, 607714939, 893871740, 1269938130, 1801914272, 2474870844, 3404825448, 4552438132, 6103593751, 7969061786, 10465138360, 13386707720, 17249876310
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Sum_{k>=1} k^b*x^k/(1 + x^k): A000593 (b=1), A078306 (b=2), A078307 (b=3), A284900 (b=4), A284926 (b=5), A284927 (b=6), this sequence (b=7), A321553 (b=8), A321554 (b=9), A321555 (b=10), A321556 (b=11), A321557 (b=12).
Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Cf. A013666.

Programs

  • Mathematica
    f[p_, e_] := (p^(7*e + 7) - 1)/(p^7 - 1); f[2, e_] := (63*2^(7*e + 1) + 1)/127; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    apply( A321552(n)=sumdiv(n, d, (-1)^(n\d-1)*d^7), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^7*x^k/(1 + x^k). - Seiichi Manyama, Nov 23 2018
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (63*2^(7*e+1)+1)/127, and a(p^e) = (p^(7*e+7) - 1)/(p^7 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^8, where c = 127*zeta(8)/1024 = 0.124529... . (End)

A321557 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^12.

Original entry on oeis.org

1, 4095, 531442, 16773119, 244140626, 2176254990, 13841287202, 68702695423, 282430067923, 999755863470, 3138428376722, 8913939907598, 23298085122482, 56680071092190, 129746582562692, 281406240452607, 582622237229762, 1156551128144685, 2213314919066162, 4094999772632494
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Cf. A013671.

Programs

  • Mathematica
    f[p_, e_] := (p^(12*e + 12) - 1)/(p^12 - 1); f[2, e_] := (2047*2^(12*e + 1) + 1)/4095; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    apply( A321557(n)=sumdiv(n, d, (-1)^(n\d-1)*d^12), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^12*x^k/(1 + x^k). - Seiichi Manyama, Nov 25 2018
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (2047*2^(12*e+12)+1)/4095, and a(p^e) = (p^(12*e+12) - 1)/(p^12 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^13, where c = 315*zeta(13)/4096 = 0.0769137... . (End)

A321816 Sum of 12th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 531442, 1, 244140626, 531442, 13841287202, 1, 282430067923, 244140626, 3138428376722, 531442, 23298085122482, 13841287202, 129746582562692, 1, 582622237229762, 282430067923, 2213314919066162, 244140626, 7355841353205284, 3138428376722
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=12 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321815 (analog for 2nd .. 11th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^12&, OddQ[#]&]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    apply( A321816(n)=sigma(n>>valuation(n,2),12), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321816(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),12)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013960(A000265(n)) = sigma_12(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^12*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(12*e+12)-1)/(p^12-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^13, where c = zeta(13)/26 = 0.0384662... . (End)

A363022 Expansion of Sum_{k>0} x^(2*k)/(1+x^k)^3.

Original entry on oeis.org

0, 1, -3, 7, -10, 13, -21, 35, -39, 36, -55, 85, -78, 71, -118, 155, -136, 130, -171, 232, -234, 177, -253, 389, -310, 248, -390, 455, -406, 378, -465, 651, -586, 426, -626, 832, -666, 533, -822, 1040, -820, 734, -903, 1129, -1144, 783, -1081, 1637, -1197, 961, -1414, 1580, -1378
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^# * Binomial[#, 2] &]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=60, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1+x^k)^3)))
    
  • PARI
    a(n) = sumdiv(n, d, (-1)^d*binomial(d, 2));

Formula

G.f.: Sum_{k>0} binomial(k,2) * (-x)^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^d * binomial(d,2) = (A002129(n) - A321543(n))/2.

A321553 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^8.

Original entry on oeis.org

1, 255, 6562, 65279, 390626, 1673310, 5764802, 16711423, 43053283, 99609630, 214358882, 428360798, 815730722, 1470024510, 2563287812, 4278124287, 6975757442, 10978587165, 16983563042, 25499674654, 37828630724, 54661514910, 78310985282, 109660357726, 152588281251, 208011334110, 282472589764
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Cf. A013667.

Programs

  • Mathematica
    Table[Total[(-1)^(n/#+1) #^8&/@Divisors[n]],{n,30}] (* Harvey P. Dale, May 05 2021 *)
    f[p_, e_] := (p^(8*e + 8) - 1)/(p^8 - 1); f[2, e_] := (127*2^(8*e + 1) + 1)/255; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    apply( A321553(n)=sumdiv(n, d, (-1)^(n\d-1)*d^8), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^8*x^k/(1 + x^k). - Seiichi Manyama, Nov 23 2018
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (127*2^(8*e+1)+1)/255, and a(p^e) = (p^(8*e+8) - 1)/(p^8 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^9, where c = 85*zeta(9)/768 = 0.110899... . (End)

A321554 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^9.

Original entry on oeis.org

1, 511, 19684, 261631, 1953126, 10058524, 40353608, 133955071, 387440173, 998047386, 2357947692, 5149944604, 10604499374, 20620693688, 38445332184, 68584996351, 118587876498, 197981928403, 322687697780, 510998308506, 794320419872, 1204911270612, 1801152661464, 2636771617564, 3814699218751
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Cf. A013668.

Programs

  • Mathematica
    f[p_, e_] := (p^(9*e + 9) - 1)/(p^9 - 1); f[2, e_] := (255*2^(9*e + 1) + 1)/511; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    apply( A321554(n)=sumdiv(n, d, (-1)^(n\d-1)*d^9), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^9*x^k/(1 + x^k). - Seiichi Manyama, Nov 24 2018
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (255*2^(9*e+1)+1)/511, and a(p^e) = (p^(9*e+9) - 1)/(p^9 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^10, where c = 511*zeta(10)/5120 = 0.0999039... . (End)

A321555 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^10.

Original entry on oeis.org

1, 1023, 59050, 1047551, 9765626, 60408150, 282475250, 1072692223, 3486843451, 9990235398, 25937424602, 61857886550, 137858491850, 288972180750, 576660215300, 1098436836351, 2015993900450, 3567040850373, 6131066257802, 10229991281926, 16680163512500, 26533985367846, 41426511213650, 63342475768150
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Cf. A013669.

Programs

  • Mathematica
    f[p_, e_] := (p^(10*e + 10) - 1)/(p^10 - 1); f[2, e_] := (511*2^(10*e + 1) + 1)/1023; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    apply( A321555(n)=sumdiv(n, d, (-1)^(n\d-1)*d^10), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^10*x^k/(1 + x^k). - Seiichi Manyama, Nov 25 2018
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (511*2^(10*e+1)+1)/1023, and a(p^e) = (p^(10*e+10) - 1)/(p^10 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^11, where c = 93*zeta(11)/1024 = 0.0908651... . (End)

A321556 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^11.

Original entry on oeis.org

1, 2047, 177148, 4192255, 48828126, 362621956, 1977326744, 8585738239, 31381236757, 99951173922, 285311670612, 742649588740, 1792160394038, 4047587844968, 8649804864648, 17583591913471, 34271896307634, 64237391641579
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Cf. A013670.

Programs

  • Mathematica
    f[p_, e_] := (p^(11*e + 11) - 1)/(p^11 - 1); f[2, e_] := (1023*2^(11*e + 1) + 1)/2047; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    apply( A321556(n)=sumdiv(n, d, (-1)^(n\d-1)*d^11), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^11*x^k/(1 + x^k). - Seiichi Manyama, Nov 25 2018
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (1023*2^(11*e+1)+1)/2047, and a(p^e) = (p^(11*e+11) - 1)/(p^11 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^12, where c = 2047*zeta(12)/24576 = 0.0833131... . (End)

A321558 a(n) = Sum_{d divides n} (-1)^(d + n/d) * d^2.

Original entry on oeis.org

1, -5, 10, -13, 26, -50, 50, -45, 91, -130, 122, -130, 170, -250, 260, -173, 290, -455, 362, -338, 500, -610, 530, -450, 651, -850, 820, -650, 842, -1300, 962, -685, 1220, -1450, 1300, -1183, 1370, -1810, 1700, -1170, 1682, -2500, 1850, -1586, 2366
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Examples

			G.f. = x - 5*x^2 + 10*x^3 - 13*x^4 + 26*x^5 - 50*x^6 + 50*x^7 + ... - _Michael Somos_, Oct 24 2019
		

Crossrefs

Column k=2 of A322083.
Cf. A321543 - A321557, A321810 - A321836 for similar sequences.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[(-1)^(k+1)*k^2*x^k/(1 + x^k) : k in [1..2*m]]) )); // G. C. Greubel, Nov 28 2018
    
  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(# + n/#)*#^2 &]; Array[a, 50] (* Amiram Eldar, Nov 27 2018 *)
  • PARI
    apply( A321558(n)=sumdiv(n, d, (-1)^(n\d-d)*d^2), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Sage
    s=(sum((-1)^(k+1)*k^2*x^k/(1 + x^k)  for k in (1..50))).series(x, 30); a = s.coefficients(x, sparse=False); a[1:] # G. C. Greubel, Nov 28 2018

Formula

G.f.: Sum_{k>=1} (-1)^(k+1)*k^2*x^k/(1 + x^k). - Ilya Gutkovskiy, Nov 27 2018
G.f.: Sum_{k>=1} (-1)^(k+1)*(x^k - x^(2*k))/(1 + x^k)^3. - Michael Somos, Oct 24 2019
a(n) = -(-1)^n A328667(n). a(2*n + 1) = A078306(2*n + 1). a(2*n) = A078306(2*n) - 8*A078306(n). - Michael Somos, Oct 24 2019
From Peter Bala, Jan 29 2022: (Start)
Multiplicative with a(2^k) = - (2^(2*k+1) + 7)/3 for k >= 1 and a(p^k) = (p^(2*k+2) - 1)/(p^2 - 1) for odd prime p.
n^2 = (-1)^(n+1)*Sum_{d divides n} A067856(n/d)*a(d). (End)

A344300 Expansion of Sum_{k>=1} (-1)^(k+1) * k^2 * x^(k^2) / (1 - x^(k^2)).

Original entry on oeis.org

1, 1, 1, -3, 1, 1, 1, -3, 10, 1, 1, -3, 1, 1, 1, -19, 1, 10, 1, -3, 1, 1, 1, -3, 26, 1, 10, -3, 1, 1, 1, -19, 1, 1, 1, -30, 1, 1, 1, -3, 1, 1, 1, -3, 10, 1, 1, -19, 50, 26, 1, -3, 1, 10, 1, -3, 1, 1, 1, -3, 1, 1, 10, -83, 1, 1, 1, -3, 1, 1, 1, -30, 1, 1, 26, -3, 1, 1, 1, -19
Offset: 1

Views

Author

Ilya Gutkovskiy, May 14 2021

Keywords

Comments

Excess of sum of odd squares dividing n over sum of even squares dividing n.

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[(-1)^(k + 1) k^2 x^(k^2)/(1 - x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^(# + 1) # &, IntegerQ[#^(1/2)] &], {n, 1, 80}]
    f[p_, e_] := (p^(2*Floor[e/2] + 2) - 1)/(p^2 - 1); f[2, e_] := 2 - (2^(2*Floor[e/2] + 2) - 1)/3; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquare(d), (-1)^((d%2)+1)*d)); \\ Michel Marcus, Aug 22 2021
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1]==2, 2 - (2^(2*floor(f[i,2]/2) + 2) - 1)/3, (f[i,1]^(2*floor(f[i,2]/2) + 2) - 1)/(f[i,1]^2 - 1)));} \\ Amiram Eldar, Nov 15 2022

Formula

Multiplicative with a(2^e) = 2 - (2^(2*floor(e/2) + 2) - 1)/3, and a(p^e) = (p^(2*floor(e/2) + 2) - 1)/(p^2 - 1) for p > 2. - Amiram Eldar, Nov 15 2022
Previous Showing 11-20 of 65 results. Next