cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 92 results. Next

A325248 Heinz number of the omega-sequence of n.

Original entry on oeis.org

1, 2, 2, 6, 2, 18, 2, 10, 6, 18, 2, 90, 2, 18, 18, 14, 2, 90, 2, 90, 18, 18, 2, 126, 6, 18, 10, 90, 2, 50, 2, 22, 18, 18, 18, 42, 2, 18, 18, 126, 2, 50, 2, 90, 90, 18, 2, 198, 6, 90, 18, 90, 2, 126, 18, 126, 18, 18, 2, 630, 2, 18, 90, 26, 18, 50, 2, 90, 18, 50
Offset: 1

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The omega-sequence of 180 is (5,3,2,2,1) with Heinz number 990, so a(180) = 990.
		

Crossrefs

Positions of squarefree terms are A325247.
Positions of normal numbers (A055932) are A325251.
First positions of each distinct term are A325238.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Table[Times@@Prime/@omseq[n],{n,100}]

Formula

A001222(a(n)) = A323014(n).
A061395(a(n)) = A001222(n).
A304465(n) = A055396(a(n)/2).
A325249(n) = A056239(a(n)).
a(n!) = A325275(n).

A325702 Number of integer partitions of n containing their multiset of multiplicities (as a submultiset).

Original entry on oeis.org

1, 1, 0, 0, 2, 1, 2, 1, 3, 3, 8, 7, 10, 13, 17, 19, 28, 35, 38, 51, 67, 81, 100, 128, 157, 195, 233, 285, 348, 427, 506, 613, 733, 873, 1063, 1263, 1503, 1802, 2131, 2537, 3005, 3565, 4171, 4922, 5820, 6775, 8001, 9333, 10860, 12739, 14840, 17206, 20029, 23248
Offset: 0

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325755.

Examples

			The partition x = (4,3,1,1,1) has multiplicities (3,1,1), which are a submultiset of x, so x is counted under a(10).
The a(1) = 1 through a(11) = 7 partitions:
  (1)  (22)   (221)  (2211)  (3211)  (4211)   (333)    (3322)    (7211)
       (211)         (3111)          (32111)  (5211)   (3331)    (33221)
                                     (41111)  (32211)  (6211)    (52211)
                                                       (42211)   (53111)
                                                       (43111)   (322211)
                                                       (322111)  (332111)
                                                       (421111)  (431111)
                                                       (511111)
		

Crossrefs

Programs

  • Mathematica
    submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap]
    Table[Length[Select[IntegerPartitions[n],submultQ[Sort[Length/@Split[#]],#]&]],{n,0,30}]

A353834 Nonprime numbers whose prime indices have all equal run-sums.

Original entry on oeis.org

1, 4, 8, 9, 12, 16, 25, 27, 32, 40, 49, 63, 64, 81, 112, 121, 125, 128, 144, 169, 243, 256, 289, 325, 343, 351, 352, 361, 512, 529, 625, 675, 729, 832, 841, 931, 961, 1008, 1024, 1331, 1369, 1539, 1600, 1681, 1728, 1849, 2048, 2176, 2187, 2197, 2209, 2401
Offset: 1

Views

Author

Gus Wiseman, May 26 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).

Examples

			The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     8: {1,1,1}
     9: {2,2}
    12: {1,1,2}
    16: {1,1,1,1}
    25: {3,3}
    27: {2,2,2}
    32: {1,1,1,1,1}
    40: {1,1,1,3}
    49: {4,4}
    63: {2,2,4}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
   112: {1,1,1,1,4}
   121: {5,5}
   125: {3,3,3}
   128: {1,1,1,1,1,1,1}
For example, 675 is in the sequence because its prime indices {2,2,2,3,3} have run-sums (6,6).
		

Crossrefs

For equal run-lengths we have A072774\A000040, counted by A047966(n)-1.
These partitions are counted by A304442(n) - 1.
These are the nonprime positions of prime powers in A353832.
Including the primes gives A353833.
For distinct run-sums we have A353838\A000040, counted by A353837(n)-1.
For compositions we have A353848\A000079, counted by A353851(n)-1.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion, distinct run-lengths A165413.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353840-A353846 pertain to partition run-sum trajectory.
A353862 gives greatest run-sum of prime indices, least A353931.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Select[Range[100],!PrimeQ[#]&&SameQ@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]&]
  • Python
    from itertools import count, islice
    from sympy import factorint, primepi
    def A353848_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: n == 1 or (sum((f:=factorint(n)).values()) > 1 and len(set(primepi(p)*e for p, e in f.items())) <= 1), count(max(startvalue,1)))
    A353848_list = list(islice(A353848_gen(),30)) # Chai Wah Wu, May 27 2022

A080257 Numbers having at least two distinct or a total of at least three prime factors.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 10 2003

Keywords

Comments

Complement of A000430; A080256(a(n)) > 3.
A084114(a(n)) > 0, see also A084110.
Also numbers greater than the square of their smallest prime-factor: a(n)>A020639(a(n))^2=A088377(a(n));
a(n)>A000430(k) for n<=13, a(n) < A000430(k) for n>13.
Numbers with at least 4 divisors. - Franklin T. Adams-Watters, Jul 28 2006
Union of A024619 and A033942; A211110(a(n)) > 2. - Reinhard Zumkeller, Apr 02 2012
Also numbers > 1 that are neither prime nor a square of a prime. Also numbers whose omega-sequence (A323023) has sum > 3. Numbers with omega-sequence summing to m are: A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7). - Gus Wiseman, Jul 03 2019
Numbers n such that sigma_2(n)*tau(n) = A001157(n)*A000005(n) >= 4*n^2. Note that sigma_2(n)*tau(n) >= sigma(n)^2 = A072861 for all n. - Joshua Zelinsky, Jan 23 2025

Examples

			8=2*2*2 and 10=2*5 are terms; 4=2*2 is not a term.
From _Gus Wiseman_, Jul 03 2019: (Start)
The sequence of terms together with their prime indices begins:
   6: {1,2}
   8: {1,1,1}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  18: {1,2,2}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  24: {1,1,1,2}
  26: {1,6}
  27: {2,2,2}
  28: {1,1,4}
  30: {1,2,3}
  32: {1,1,1,1,1}
(End)
		

Crossrefs

Programs

  • Haskell
    a080257 n = a080257_list !! (n-1)
    a080257_list = m a024619_list a033942_list where
       m xs'@(x:xs) ys'@(y:ys) | x < y  = x : m xs ys'
                               | x == y = x : m xs ys
                               | x > y  = y : m xs' ys
    -- Reinhard Zumkeller, Apr 02 2012
    
  • Mathematica
    Select[Range[100],PrimeNu[#]>1||PrimeOmega[#]>2&] (* Harvey P. Dale, Jul 23 2013 *)
  • PARI
    is(n)=omega(n)>1 || isprimepower(n)>2
    
  • PARI
    is(n)=my(k=isprimepower(n)); if(k, k>2, !isprime(n)) \\ Charles R Greathouse IV, Jan 23 2025

Formula

a(n) = n + O(n/log n). - Charles R Greathouse IV, Sep 14 2015

Extensions

Definition clarified by Harvey P. Dale, Jul 23 2013

A325508 Product of primes indexed by the prime exponents of n!.

Original entry on oeis.org

1, 1, 2, 4, 10, 20, 42, 84, 204, 476, 798, 1596, 3828, 7656, 12276, 24180, 36660, 73320, 120840, 241680, 389424, 785680, 1294440, 2588880, 3848880, 7147920, 11264760, 15926040, 26057304, 52114608, 74421648, 148843296, 187159392, 340949280, 527531760, 926505360
Offset: 0

Views

Author

Gus Wiseman, May 08 2019

Keywords

Comments

The prime indices of a(n) are the signature of n!, which is row n of A115627.

Examples

			We have 7! = 2^4 * 3^2 * 5^1 * 7^1, so a(7) = prime(4)*prime(2)*prime(1)*prime(1) = 84.
The sequence of terms together with their prime indices begins:
          1: {}
          1: {}
          2: {1}
          4: {1,1}
         10: {1,3}
         20: {1,1,3}
         42: {1,2,4}
         84: {1,1,2,4}
        204: {1,1,2,7}
        476: {1,1,4,7}
        798: {1,2,4,8}
       1596: {1,1,2,4,8}
       3828: {1,1,2,5,10}
       7656: {1,1,1,2,5,10}
      12276: {1,1,2,2,5,11}
      24180: {1,1,2,3,6,11}
      36660: {1,1,2,3,6,15}
      73320: {1,1,1,2,3,6,15}
     120840: {1,1,1,2,3,8,16}
     241680: {1,1,1,1,2,3,8,16}
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@Last/@If[(n!)==1,{},FactorInteger[n!]],{n,0,30}]

Formula

a(n) = A181819(n!).
A001221(a(n)) = A071626(n).
A001222(a(n)) = A000720(n).
A056239(a(n)) = A022559(n).
A003963(a(n)) = A135291(n).
A061395(a(n)) = A011371(n).
A007814(a(n)) = A056171(n).
a(n) = A122111(A307035(n)). - Antti Karttunen, Nov 19 2019

A325239 Irregular triangle read by rows where row 1 is {1} and row n > 1 is the sequence starting with n and repeatedly applying A181819 until 2 is reached.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 2, 5, 2, 6, 4, 3, 2, 7, 2, 8, 5, 2, 9, 3, 2, 10, 4, 3, 2, 11, 2, 12, 6, 4, 3, 2, 13, 2, 14, 4, 3, 2, 15, 4, 3, 2, 16, 7, 2, 17, 2, 18, 6, 4, 3, 2, 19, 2, 20, 6, 4, 3, 2, 21, 4, 3, 2, 22, 4, 3, 2, 23, 2, 24, 10, 4, 3, 2, 25, 3, 2, 26, 4, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The function A181819 maps n = p^i*...*q^j to prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n.

Examples

			Triangle begins:
   1              26 4 3 2        51 4 3 2          76 6 4 3 2
   2              27 5 2          52 6 4 3 2        77 4 3 2
   3 2            28 6 4 3 2      53 2              78 8 5 2
   4 3 2          29 2            54 10 4 3 2       79 2
   5 2            30 8 5 2        55 4 3 2          80 14 4 3 2
   6 4 3 2        31 2            56 10 4 3 2       81 7 2
   7 2            32 11 2         57 4 3 2          82 4 3 2
   8 5 2          33 4 3 2        58 4 3 2          83 2
   9 3 2          34 4 3 2        59 2              84 12 6 4 3 2
  10 4 3 2        35 4 3 2        60 12 6 4 3 2     85 4 3 2
  11 2            36 9 3 2        61 2              86 4 3 2
  12 6 4 3 2      37 2            62 4 3 2          87 4 3 2
  13 2            38 4 3 2        63 6 4 3 2        88 10 4 3 2
  14 4 3 2        39 4 3 2        64 13 2           89 2
  15 4 3 2        40 10 4 3 2     65 4 3 2          90 12 6 4 3 2
  16 7 2          41 2            66 8 5 2          91 4 3 2
  17 2            42 8 5 2        67 2              92 6 4 3 2
  18 6 4 3 2      43 2            68 6 4 3 2        93 4 3 2
  19 2            44 6 4 3 2      69 4 3 2          94 4 3 2
  20 6 4 3 2      45 6 4 3 2      70 8 5 2          95 4 3 2
  21 4 3 2        46 4 3 2        71 2              96 22 4 3 2
  22 4 3 2        47 2            72 15 4 3 2       97 2
  23 2            48 14 4 3 2     73 2              98 6 4 3 2
  24 10 4 3 2     49 3 2          74 4 3 2          99 6 4 3 2
  25 3 2          50 6 4 3 2      75 6 4 3 2       100 9 3 2
		

Crossrefs

Row lengths are A182850(n) + 1.
See A353510 for a full square array version of this table.

Programs

  • Mathematica
    red[n_]:=Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]];
    Table[NestWhileList[red,n,#>2&],{n,30}]

Formula

A001222(T(n,k)) = A323023(n,k), n > 2, k <= A182850(n).

A325276 Irregular triangle read by rows where row n is the omega-sequence of n!.

Original entry on oeis.org

1, 2, 2, 1, 4, 2, 2, 1, 5, 3, 2, 2, 1, 7, 3, 3, 1, 8, 4, 3, 2, 2, 1, 11, 4, 3, 2, 2, 1, 13, 4, 3, 2, 2, 1, 15, 4, 4, 1, 16, 5, 4, 2, 2, 1, 19, 5, 4, 2, 2, 1, 20, 6, 4, 2, 2, 1, 22, 6, 4, 2, 1, 24, 6, 5, 2, 2, 1, 28, 6, 5, 2, 2, 1, 29, 7, 5, 2, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).

Examples

			Triangle begins:
  {}
  {}
   1
   2  2  1
   4  2  2  1
   5  3  2  2  1
   7  3  3  1
   8  4  3  2  2  1
  11  4  3  2  2  1
  13  4  3  2  2  1
  15  4  4  1
  16  5  4  2  2  1
  19  5  4  2  2  1
  20  6  4  2  2  1
  22  6  4  2  1
  24  6  5  2  2  1
  28  6  5  2  2  1
  29  7  5  2  2  1
  32  7  5  2  2  1
  33  8  5  2  2  1
  36  8  5  2  2  1
  38  8  5  2  2  1
  40  8  6  2  2  1
  41  9  6  2  2  1
  45  9  6  2  2  1
  47  9  6  2  2  1
  49  9  6  3  2  2  1
  52  9  6  3  2  2  1
  55  9  6  3  2  2  1
  56 10  6  3  2  2  1
  59 10  6  3  2  2  1
		

Crossrefs

Row lengths are A325272. Row sums are A325274. Row n is row A325275(n) of A112798. Second-to-last column is A325273. Column k = 1 is A022559. Column k = 2 is A000720. Column k = 3 is A071626.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Table[omseq[n!],{n,0,30}]

A351592 Number of Look-and-Say partitions (A239455) of n without distinct multiplicities, i.e., those that are not Wilf partitions (A098859).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 1, 0, 5, 2, 8, 9, 8, 6, 21, 14, 20, 26, 31, 24, 53, 35, 60, 68, 78, 76, 140, 115, 163, 183, 232, 218, 343, 301, 433, 432, 565, 542, 774, 728, 958, 977, 1251, 1220, 1612, 1561, 2053, 2090, 2618, 2609, 3326, 3378
Offset: 0

Views

Author

Gus Wiseman, Feb 16 2022

Keywords

Comments

A partition is Look-and-Say iff it has a permutation with all distinct run-lengths. For example, the partition y = (2,2,2,1,1,1) has the permutation (2,2,1,1,1,2), with run-lengths (2,3,1), which are distinct, so y is counted under A239455(9).
A partition is Wilf iff it has distinct multiplicities of parts. For example, (2,2,2,1,1,1) has multiplicities (3,3), so is not counted under A098859(9).
The Heinz numbers of these partitions are given by A351294 \ A130091.
Is a(17) = 0 the last zero of the sequence?

Examples

			The a(9) = 1 through a(18) = 5 partitions are (empty columns not shown):
  n=9:      n=12:       n=15:         n=16:       n=18:
  --------------------------------------------------------------
  (222111)  (333111)    (333222)      (33331111)  (444222)
            (22221111)  (444111)                  (555111)
                        (2222211111)              (3322221111)
                                                  (32222211111)
                                                  (222222111111)
		

Crossrefs

Wilf partitions are counted by A098859, ranked by A130091.
Look-and-Say partitions are counted by A239455, ranked by A351294.
Non-Wilf partitions are counted by A336866, ranked by A130092.
Non-Look-and-Say partitions are counted by A351293, ranked by A351295.
A000569 = number of graphical partitions, complement A339617.
A032020 = number of binary expansions with all distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A225485/A325280 = frequency depth, ranked by A182850/A323014.
A329738 = compositions with all equal run-lengths.
A329739 = compositions with all distinct run-lengths
A351013 = compositions with all distinct runs.
A351017 = binary words with all distinct run-lengths, for all runs A351016.
A351292 = patterns with all distinct run-lengths, for all runs A351200.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Length/@Split[#]&&Select[Permutations[#], UnsameQ@@Length/@Split[#]&]!={}&]],{n,0,15}]

Formula

a(n) = A239455(n) - A098859(n). Here we assume A239455(0) = 1.

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A353841 Length of the trajectory of the partition run-sum transformation of n, using Heinz numbers; a(1) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3
Offset: 1

Views

Author

Gus Wiseman, May 25 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Starting with n, this is one plus the number of times one must apply A353832 to reach a squarefree number.
Also Kimberling's depth statistic (defined in A237685 and A237750) plus one.

Examples

			The trajectory for a(1080) = 4 is the following, with prime indices shown on the right:
  1080: {1,1,1,2,2,2,3}
   325: {3,3,6}
   169: {6,6}
    37: {12}
The trajectory for a(87780) = 5 is the following, with prime indices shown on the right:
  87780: {1,1,2,3,4,5,8}
  65835: {2,2,3,4,5,8}
  51205: {3,4,4,5,8}
  19855: {3,5,8,8}
   2915: {3,5,16}
The trajectory for a(39960) = 5 is the following, with prime indices shown on the right:
  39960: {1,1,1,2,2,2,3,12}
  12025: {3,3,6,12}
   6253: {6,6,12}
   1369: {12,12}
     89: {24}
		

Crossrefs

Positions of 1's are A005117.
The version for run-lengths instead of sums is A182850 or A323014.
Positions of first appearances are A353743.
These are the row-lengths of A353840.
Other sequences pertaining to this trajectory are A353842-A353845.
Counting partitions by this statistic gives A353846.
The version for compositions is A353854, run-lengths of A353853.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798 and A296150.
A300273 ranks collapsible partitions, counted by A275870.
A318928 gives runs-resistance of binary expansion.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Table[If[n==1,0,Length[NestWhileList[Times@@Prime/@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]*k]&,n,!SquareFreeQ[#]&]]],{n,100}]
  • PARI
    pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); };
    A353832(n) = if(1==n,n,my(pruns = pis_to_runs(n), m=1, runsum=pruns[1]); for(i=2,#pruns,if(pruns[i] == pruns[i-1], runsum += pruns[i], m *= prime(runsum); runsum = pruns[i])); (m*prime(runsum)));
    A353841(n) = if(1==n,0,for(i=1,oo,if(issquarefree(n), return(i), n = A353832(n)))); \\ Antti Karttunen, Jan 20 2025

Formula

a(1) = 0, and for n > 1, if A008966(n) = 1 [n is in A005117], a(n) = 1, otherwise a(n) = 1+a(A353832(n)). [See comments] - Antti Karttunen, Jan 20 2025

Extensions

More terms from Antti Karttunen, Jan 20 2025

A325278 Smallest number with adjusted frequency depth n.

Original entry on oeis.org

1, 2, 4, 6, 12, 60, 2520, 1286485200, 35933692027611398678865941374040400000
Offset: 0

Views

Author

Gus Wiseman, Apr 17 2019

Keywords

Comments

The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is 1 plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.
Differs from A182857 in having 2 instead of 3.

Crossrefs

A subsequence of A325238.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).

Programs

  • Mathematica
    nn=10000;
    fd[n_]:=Switch[n,1,0,?PrimeQ,1,,1+fd[Times@@Prime/@Last/@FactorInteger[n]]];
    fds=fd/@Range[nn];
    Sort[Table[Position[fds,x][[1,1]],{x,Union[fds]}]]
Previous Showing 21-30 of 92 results. Next