cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 92 results. Next

A182863 Members m of A025487 such that, if k appears in m's prime signature, k-1 appears at least as often as k (for any integer k > 1).

Original entry on oeis.org

1, 2, 6, 12, 30, 60, 210, 360, 420, 1260, 2310, 2520, 4620, 13860, 27720, 30030, 60060, 75600, 138600, 180180, 360360, 510510, 831600, 900900, 1021020, 1801800, 3063060, 6126120, 9699690, 10810800, 15315300, 19399380, 30630600, 37837800
Offset: 1

Views

Author

Matthew Vandermast, Jan 14 2011

Keywords

Comments

Members m of A025487 such that A181819(m) is also a member of A025487.
If prime signatures are considered as partitions, these are the members of A025487 whose prime signature is conjugate to the prime signature of a member of A181818.
Also the least number with each sorted prime metasignature, where a number's metasignature is the sequence of multiplicities of exponents in its prime factorization. For example, 2520 has prime indices {1,1,1,2,2,3,4}, sorted prime signature {1,1,2,3}, and sorted prime metasignature {1,1,2}. - Gus Wiseman, May 21 2022

Examples

			The prime signature of 360360 = 2^3*3^2*5*7*11*13 is (3,2,1,1,1,1). 2 appears as many times as 3 in 360360's prime signature, and 1 appears more times than 2. Since 360360 is also a member of A025487, it is a member of this sequence.
From _Gus Wiseman_, May 21 2022: (Start)
The terms together with their sorted prime signatures and sorted prime metasignatures begin:
      1: {}                -> {}            -> {}
      2: {1}               -> {1}           -> {1}
      6: {1,2}             -> {1,1}         -> {2}
     12: {1,1,2}           -> {1,2}         -> {1,1}
     30: {1,2,3}           -> {1,1,1}       -> {3}
     60: {1,1,2,3}         -> {1,1,2}       -> {1,2}
    210: {1,2,3,4}         -> {1,1,1,1}     -> {4}
    360: {1,1,1,2,2,3}     -> {1,2,3}       -> {1,1,1}
    420: {1,1,2,3,4}       -> {1,1,1,2}     -> {1,3}
   1260: {1,1,2,2,3,4}     -> {1,1,2,2}     -> {2,2}
   2310: {1,2,3,4,5}       -> {1,1,1,1,1}   -> {5}
   2520: {1,1,1,2,2,3,4}   -> {1,1,2,3}     -> {1,1,2}
   4620: {1,1,2,3,4,5}     -> {1,1,1,1,2}   -> {1,4}
  13860: {1,1,2,2,3,4,5}   -> {1,1,1,2,2}   -> {2,3}
  27720: {1,1,1,2,2,3,4,5} -> {1,1,1,2,3}   -> {1,1,3}
  30030: {1,2,3,4,5,6}     -> {1,1,1,1,1,1} -> {6}
  60060: {1,1,2,3,4,5,6}   -> {1,1,1,1,1,2} -> {1,5}
(End)
		

Crossrefs

Intersection of A025487 and A179983.
Subsequence of A129912 and A181826.
Includes all members of A182862.
Positions of first appearances in A353742, unordered version A238747.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A005361 gives product of prime signature, firsts A353500 (sorted A085629).
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
A182850 gives frequency depth of prime indices, counted by A225485.
A323014 gives adjusted frequency depth of prime indices, counted by A325280.

Programs

  • Mathematica
    nn=1000;
    r=Table[Sort[Length/@Split[Sort[Last/@If[n==1,{},FactorInteger[n]]]]],{n,nn}];
    Select[Range[nn],!MemberQ[Take[r,#-1],r[[#]]]&] (* Gus Wiseman, May 21 2022 *)

A323025 Numbers with exactly four distinct exponents in their prime factorization, or four distinct parts in their prime signature.

Original entry on oeis.org

75600, 105840, 113400, 118800, 126000, 140400, 151200, 158760, 178200, 183600, 198000, 205200, 210600, 211680, 232848, 234000, 237600, 246960, 248400, 252000, 261360, 275184, 275400, 280800, 283500, 294000, 302400, 306000, 307800, 313200, 315000, 334800
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2019

Keywords

Comments

Positions of 4's in A071625.
Numbers k such that A001221(A181819(k)) = 4.
Is a(n) ~ c * n for some c? - David A. Corneth, Jan 09 2019
The asymptotic density of this sequence is (6/Pi^2) * Sum_{n>=2, n squarefree} r(n)/((n-1)*psi(n)) = 0.00035750... (corresponding to c = 2797.1... in the question above, whose answer is affirmative), where psi is the Dedekind psi function (A001615), and r(n) = Sum_{d_1|n, 1Amiram Eldar, Oct 18 2020

Examples

			126000 = 2^4 * 3^2 * 5^3 * 7^1 has four distinct exponents {1, 2, 3, 4}, so belongs to the sequence.
831600 = 2^4 * 3^3 * 5^2 * 7^1 * 11^1 has four distinct exponents {1, 2, 3, 4}, so belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    tom[n_]:=Length[Union[Last/@If[n==1,{},FactorInteger[n]]]];
    Select[Range[100000],tom[#]==4&]
  • PARI
    is(n) = #Set(factor(n)[, 2]) == 4 \\ David A. Corneth, Jan 09 2019

A323055 Numbers with exactly two distinct exponents in their prime factorization, or two distinct parts in their prime signature.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200
Offset: 1

Views

Author

Gus Wiseman, Jan 03 2019

Keywords

Comments

The first term is A006939(2) = 12.
First differs from A059404 in lacking 360, whose prime signature has three distinct parts.
Positions of 2's in A071625.
Numbers k such that A001221(A181819(k)) = 2.
The asymptotic density of this sequence is (6/Pi^2) * Sum_{n>=2, n squarefree} 1/((n-1)*psi(n)) = 0.3611398..., where psi is the Dedekind psi function (A001615) (Sanna, 2020). - Amiram Eldar, Oct 18 2020

Examples

			3000 = 2^3 * 3^1 * 5^3 has two distinct exponents {1, 3}, so belongs to the sequence.
		

Crossrefs

One distinct exponent: A062770 or A072774.
Two distinct exponents: this sequence.
Three distinct exponents: A323024.
Four distinct exponents: A323025.
Five distinct exponents: A323056.

Programs

  • Maple
    isA323055 := proc(n)
        local eset;
        eset := {};
        for pf in ifactors(n)[2] do
            eset := eset union {pf[2]} ;
        end do:
        simplify(nops(eset) = 2 ) ;
    end proc:
    for n from 12 to 1000 do
        if isA323055(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jan 09 2019
  • Mathematica
    Select[Range[100],Length[Union[Last/@FactorInteger[#]]]==2&]

A325246 Number of integer partitions of n with adjusted frequency depth equal to their length.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 4, 4, 6, 8, 14, 15, 21, 26, 34, 42, 51, 60, 74, 86, 102, 117, 137, 155, 178, 202, 228, 255, 286, 317, 355, 390, 430, 472, 519, 566, 617, 670, 728, 787, 852, 916, 988, 1060, 1137, 1218, 1303, 1389, 1482, 1577, 1679, 1781, 1890, 2001, 2120
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325266.
The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2). The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is given by A323014.

Examples

			The a(1) = 1 through a(10) = 14 partitions (A = 10):
  (1)  (2)   (3)  (4)   (5)     (6)     (7)     (8)      (9)      (A)
       (11)       (22)  (2111)  (33)    (421)   (44)     (432)    (55)
                                (321)   (2221)  (431)    (531)    (532)
                                (3111)  (4111)  (521)    (621)    (541)
                                                (5111)   (3222)   (631)
                                                (32111)  (6111)   (721)
                                                         (32211)  (3331)
                                                         (42111)  (4222)
                                                                  (7111)
                                                                  (32221)
                                                                  (33211)
                                                                  (42211)
                                                                  (43111)
                                                                  (52111)
		

Crossrefs

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==Length[#]&]],{n,0,30}]

A325250 Number of integer partitions of n whose omega-sequence is strict (no repeated parts).

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 5, 4, 6, 2, 11, 3, 10, 12, 17, 12, 31, 22, 42, 47, 57, 60, 98, 94, 119, 143, 174, 182, 256, 253, 321, 365, 425, 480, 615, 645, 803, 946, 1180, 1341, 1766, 2021, 2607, 3145, 3951, 4727, 6123, 7236, 9136
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1).
The Heinz numbers of these partitions are given by A325247.

Examples

			The a(1) = 1 through a(10) = 6 partitions (A = 10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    11111  33      1111111  44        333        55
              1111         222              2222      222111     3322
                           2211             3311      111111111  4411
                           111111           11111111             22222
                                                                 1111111111
		

Crossrefs

Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@omseq[#]&]],{n,0,30}]

Formula

a(n) + A325262(n) = A000041(n).

A325251 Numbers whose omega-sequence covers an initial interval of positive integers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
The enumeration of these partitions by sum is given by A325260.

Examples

			The sequence of terms together with their omega sequences begins:
   1:              31: 1             63: 3 2 2 1
   2: 1            33: 2 2 1         65: 2 2 1
   3: 1            34: 2 2 1         67: 1
   4: 2 1          35: 2 2 1         68: 3 2 2 1
   5: 1            37: 1             69: 2 2 1
   6: 2 2 1        38: 2 2 1         71: 1
   7: 1            39: 2 2 1         73: 1
   9: 2 1          41: 1             74: 2 2 1
  10: 2 2 1        43: 1             75: 3 2 2 1
  11: 1            44: 3 2 2 1       76: 3 2 2 1
  12: 3 2 2 1      45: 3 2 2 1       77: 2 2 1
  13: 1            46: 2 2 1         79: 1
  14: 2 2 1        47: 1             82: 2 2 1
  15: 2 2 1        49: 2 1           83: 1
  17: 1            50: 3 2 2 1       84: 4 3 2 2 1
  18: 3 2 2 1      51: 2 2 1         85: 2 2 1
  19: 1            52: 3 2 2 1       86: 2 2 1
  20: 3 2 2 1      53: 1             87: 2 2 1
  21: 2 2 1        55: 2 2 1         89: 1
  22: 2 2 1        57: 2 2 1         90: 4 3 2 2 1
  23: 1            58: 2 2 1         91: 2 2 1
  25: 2 1          59: 1             92: 3 2 2 1
  26: 2 2 1        60: 4 3 2 2 1     93: 2 2 1
  28: 3 2 2 1      61: 1             94: 2 2 1
  29: 1            62: 2 2 1         95: 2 2 1
		

Crossrefs

Positions of normal numbers (A055932) in A325248.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],normQ[omseq[#]]&]

A325274 Sum of the omega-sequence of n!.

Original entry on oeis.org

0, 0, 1, 5, 9, 13, 14, 20, 23, 25, 24, 30, 33, 35, 35, 40, 44, 46, 49, 51, 54, 56, 59, 61, 65, 67, 72, 75, 78, 80, 83, 85, 90, 90, 95, 97, 101, 103, 105, 106, 110, 112, 115, 117, 122, 125, 127, 129, 134, 136, 139, 140, 143, 145, 149, 153, 157, 159, 160, 162
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1), with sum 13.

Crossrefs

a(n) = A056239(A325275(n)).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Table[Total[omseq[n!]],{n,0,100}]

A325275 Heinz number of the omega-sequence of n!.

Original entry on oeis.org

1, 1, 2, 18, 126, 990, 850, 11970, 19530, 25830, 4606, 73458, 92862, 116298, 43134, 229086, 275418, 366894, 440946, 515394, 568062, 613206, 769158, 963378, 1060254, 1135602, 6108570, 6431490, 6915870, 8923590, 9398610, 10191870, 11352510, 3139866, 16458210
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

A001222(a(n)) = A325272.
A055396(a(n)/2) = A325273.
A056239(a(n)) = A325274.
Row n of A325276 is row a(n) of A112798.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Table[Times@@Prime/@omseq[n!],{n,30}]

A325610 Adjusted frequency depth of 2^n - 1.

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 1, 3, 3, 3, 3, 5, 1, 3, 3, 3, 1, 5, 1, 5, 5, 3, 3, 5, 3, 3, 3, 3, 3, 5, 1, 3, 3, 3, 3, 5, 3, 3, 3, 5, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 5, 1, 3, 5, 3, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 5, 3, 5, 3, 3, 3, 5, 3, 3, 3
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is 1 plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.

Crossrefs

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]];
    Table[fdadj[2^n-1],{n,100}]

A325756 A number k belongs to the sequence if k = 1 or k is divisible by its prime shadow A181819(k) and the quotient k/A181819(k) also belongs to the sequence.

Original entry on oeis.org

1, 2, 12, 336, 360, 45696, 52416, 75600, 22665216, 31804416, 42928704, 77792400, 92610000, 164656800, 174636000
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

We define the prime shadow A181819(k) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
     12: {1,1,2}
    336: {1,1,1,1,2,4}
    360: {1,1,1,2,2,3}
  45696: {1,1,1,1,1,1,1,2,4,7}
  52416: {1,1,1,1,1,1,2,2,4,6}
  75600: {1,1,1,1,2,2,2,3,3,4}
		

Crossrefs

Programs

  • Mathematica
    red[n_] := If[n == 1, 1, Times @@ Prime /@ Last /@ FactorInteger[n]];
    suQ[n_]:=n==1||Divisible[n,red[n]]&&suQ[n/red[n]];
    Select[Range[10000],suQ]
  • PARI
    ps(n) = my(f=factor(n)); prod(k=1, #f~, prime(f[k, 2])); \\ A181819
    isok(k) = {if ((k==1), return(1)); my(p=ps(k)); ((k % p) == 0) && isok(k/p);} \\ Michel Marcus, Jan 09 2021

Extensions

a(9)-a(15) from Amiram Eldar, Jan 09 2021
Previous Showing 41-50 of 92 results. Next