cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A325755 Numbers n divisible by their prime shadow A181819(n).

Original entry on oeis.org

1, 2, 9, 12, 18, 36, 40, 60, 84, 112, 120, 125, 132, 156, 180, 204, 225, 228, 250, 252, 276, 280, 336, 348, 352, 360, 372, 396, 440, 441, 444, 450, 468, 492, 516, 520, 540, 560, 564, 600, 612, 636, 675, 680, 684, 708, 732, 760, 804, 828, 832, 840, 852, 876
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions containing their multiset of multiplicities as a submultiset (counted by A325702).

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     9: {2,2}
    12: {1,1,2}
    18: {1,2,2}
    36: {1,1,2,2}
    40: {1,1,1,3}
    60: {1,1,2,3}
    84: {1,1,2,4}
   112: {1,1,1,1,4}
   120: {1,1,1,2,3}
   125: {3,3,3}
   132: {1,1,2,5}
   156: {1,1,2,6}
   180: {1,1,2,2,3}
   204: {1,1,2,7}
   225: {2,2,3,3}
   228: {1,1,2,8}
   250: {1,3,3,3}
   252: {1,1,2,2,4}
		

Crossrefs

Programs

  • Mathematica
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Select[Range[100],Divisible[#,red[#]]&]

A353393 Positive integers m > 1 that are prime or whose prime shadow A181819(m) is a divisor of m that is already in the sequence.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 36, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 225, 227, 229, 233, 239, 241, 251
Offset: 1

Views

Author

Gus Wiseman, May 15 2022

Keywords

Comments

We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The terms together with their prime indices begin:
    2: {1}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   23: {9}
   29: {10}
   31: {11}
   36: {1,1,2,2}
		

Crossrefs

The first term that is not a prime power A000961 is 36.
The first term that is not a prime or a perfect power A001597 is 1260. - Corrected by Robert Israel, Mar 10 2025
The non-recursive version is A325755, counted by A325702.
Removing all primes gives A353389.
These partitions are counted by A353426.
The version for compositions is A353431.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A130091 lists numbers with all distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
A325131 lists numbers relatively prime to their prime shadow.

Programs

  • Maple
    pshadow:= proc(n) local F,i;
      F:= ifactors(n)[2];
      mul(ithprime(i),i=F[..,2])
    end proc:
    filter:= proc(n) local s;
      if isprime(n) then return true fi;
      s:= pshadow(n);
      n mod s = 0 and member(s,R)
    end proc:
    R:= {}:
    for i from 2 to 2000 do if filter(i) then R:= R union {i} fi od:
    sort(convert(R,list)); # Robert Israel, Mar 10 2025
  • Mathematica
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    suQ[n_]:=PrimeQ[n]||Divisible[n,red[n]]&&suQ[red[n]];
    Select[Range[2,200],suQ[#]&]

Formula

Equals A353389 U A000040.

A353394 Product of prime shadows of prime indices of n (with multiplicity).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 2, 2, 4, 3, 4, 1, 2, 4, 5, 2, 6, 2, 3, 2, 4, 4, 8, 3, 4, 4, 2, 1, 4, 2, 6, 4, 6, 5, 8, 2, 2, 6, 4, 2, 8, 3, 4, 2, 9, 4, 4, 4, 7, 8, 4, 3, 10, 4, 2, 4, 6, 2, 12, 1, 8, 4, 2, 2, 6, 6, 6, 4, 4, 6, 8, 5, 6, 8, 4, 2, 16, 2, 2, 6, 4, 4
Offset: 1

Views

Author

Gus Wiseman, May 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			We have 42 = prime(1)*prime(2)*prime(4), so a(42) = 1*2*3 = 6.
		

Crossrefs

Positions of first appearances are A353397.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914, product A005361.
A181819 gives prime shadow, with an inverse A181821.
A324850 lists numbers divisible by the product of their prime indices.
A325131 lists numbers relatively prime to their prime shadow.
A325755 lists numbers divisible by their prime shadow, quotient also A325756, with recursion A353393.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Table[Times@@red/@primeMS[n],{n,100}]

Formula

a(n) = Product_i A181819(A112798(n,i)).
Positions where a(n) = A003963(n) are A003586.
Positions where a(n) = A005361(n) are A353399, counted by A353398.
Positions where a(n) = A181819(n) are A353395, counted by A353396.

A353399 Numbers whose product of prime exponents equals the product of prime shadows of its prime indices.

Original entry on oeis.org

1, 2, 12, 20, 36, 44, 56, 68, 100, 124, 164, 184, 208, 236, 240, 268, 332, 436, 464, 484, 508, 528, 608, 628, 688, 716, 720, 752, 764, 776, 816, 844, 880, 964, 1108, 1132, 1156, 1168, 1200, 1264, 1296, 1324, 1344, 1360, 1412, 1468, 1488, 1584, 1604, 1616, 1724
Offset: 1

Views

Author

Gus Wiseman, May 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The terms together with their prime indices begin:
     1: {}
     2: {1}
    12: {1,1,2}
    20: {1,1,3}
    36: {1,1,2,2}
    44: {1,1,5}
    56: {1,1,1,4}
    68: {1,1,7}
   100: {1,1,3,3}
   124: {1,1,11}
   164: {1,1,13}
   184: {1,1,1,9}
   208: {1,1,1,1,6}
   236: {1,1,17}
   240: {1,1,1,1,2,3}
		

Crossrefs

Product of prime indices is A003963, counted by A339095.
The LHS (product of exponents) is A005361, counted by A266477.
The RHS (product of shadows) is A353394, first appearances A353397.
A related comparison is A353395, counted by A353396.
The partitions are counted by A353398.
Taking indices instead of exponents on the LHS gives A353503.
A001222 counts prime factors with multiplicity, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
A325131 lists numbers relatively prime to their prime shadow.
Numbers divisible by their prime shadow:
- counted by A325702
- listed by A325755
- co-recursive version A325756
- nonprime recursive version A353389
- recursive version A353393
- recursive version counted by A353426

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Select[Range[100],Times@@red/@primeMS[#]==Times@@Last/@FactorInteger[#]&]

Formula

A005361(a(n)) = A353394(a(n)).

A353398 Number of integer partitions of n where the product of multiplicities equals the product of prime shadows of the parts.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 2, 1, 2, 1, 2, 6, 5, 4, 4, 6, 6, 8, 8, 13, 16, 13, 16, 18, 16, 20, 21, 27, 30, 27, 33, 41, 44, 51, 48, 58, 61, 66, 66, 74, 83, 86, 99, 102, 111, 115, 126, 137, 147, 156
Offset: 0

Views

Author

Gus Wiseman, May 17 2022

Keywords

Comments

We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The a(8) = 1 through a(14) = 4 partitions (A = 10, B = 11):
  3311  711     61111  521111   5511      B11       A1111
        321111         3221111  9111      721111    731111
                                531111    811111    33221111
                                3321111   5221111   422111111
                                22221111  43111111
                                42111111
		

Crossrefs

The LHS (product of multiplicities) is A005361, counted by A266477.
The RHS (product of prime shadows) is A353394, first appearances A353397.
A related comparison is A353396, ranked by A353395.
These partitions are ranked by A353399.
A001222 counts prime factors with multiplicity, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A325131 lists numbers relatively prime to their prime shadow.
A325755 lists numbers divisible by their prime shadow, counted by A325702.
A339095 counts partitions by product (or factorizations by sum).

Programs

  • Mathematica
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Table[Length[Select[IntegerPartitions[n],Times@@red/@#==Times@@Length/@Split[#]&]],{n,0,30}]

A353395 Numbers k such that the prime shadow of k equals the product of prime shadows of the prime indices of k.

Original entry on oeis.org

1, 3, 5, 11, 15, 17, 26, 31, 33, 41, 51, 55, 58, 59, 67, 78, 83, 85, 86, 93, 94, 109, 123, 126, 127, 130, 146, 148, 155, 157, 158, 165, 174, 177, 179, 187, 191, 196, 201, 202, 205, 211, 241, 244, 249, 255, 258, 274, 277, 278, 282, 283, 284, 286, 290, 295, 298
Offset: 1

Views

Author

Gus Wiseman, May 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The terms together with their prime indices begin:
      1: {}         78: {1,2,6}      158: {1,22}
      3: {2}        83: {23}         165: {2,3,5}
      5: {3}        85: {3,7}        174: {1,2,10}
     11: {5}        86: {1,14}       177: {2,17}
     15: {2,3}      93: {2,11}       179: {41}
     17: {7}        94: {1,15}       187: {5,7}
     26: {1,6}     109: {29}         191: {43}
     31: {11}      123: {2,13}       196: {1,1,4,4}
     33: {2,5}     126: {1,2,2,4}    201: {2,19}
     41: {13}      127: {31}         202: {1,26}
     51: {2,7}     130: {1,3,6}      205: {3,13}
     55: {3,5}     146: {1,21}       211: {47}
     58: {1,10}    148: {1,1,12}     241: {53}
     59: {17}      155: {3,11}       244: {1,1,18}
     67: {19}      157: {37}         249: {2,23}
For example, 126 is in the sequence because its prime indices {1,2,2,4} have shadows {1,2,2,3}, with product 12, which is also the prime shadow of 126.
		

Crossrefs

The prime terms are A006450.
The LHS (prime shadow) is A181819, with an inverse A181821.
The RHS (product of shadows) is A353394, first appearances A353397.
This is a ranking of the partitions counted by A353396.
Another related comparison is A353399, counted by A353398.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914, product A005361.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A324850 lists numbers divisible by the product of their prime indices.
Numbers divisible by their prime shadow:
- counted by A325702
- listed by A325755
- co-recursive version A325756
- nonprime recursive version A353389
- recursive version A353393, counted by A353426

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Select[Range[100],Times@@red/@primeMS[#]==red[#]&]

Formula

A181819(a(n)) = A353394(a(n)) = Product_i A181819(A112798(a(n),i)).
Showing 1-7 of 7 results.