cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A232580 Number of binary sequences of length n that contain at least one contiguous subsequence 011.

Original entry on oeis.org

0, 0, 0, 1, 4, 12, 31, 74, 168, 369, 792, 1672, 3487, 7206, 14788, 30185, 61356, 124308, 251199, 506578, 1019920, 2050785, 4119280, 8267216, 16580799, 33236622, 66594636, 133385689, 267089188, 534692604, 1070217247, 2141780762, 4285739832, 8575004241
Offset: 0

Views

Author

Geoffrey Critzer, Nov 26 2013

Keywords

Comments

From Gus Wiseman, Jun 26 2022: (Start)
Also the number of integer compositions of n + 1 with an even part other than the first or last. For example, the a(3) = 1 through a(5) = 12 compositions are:
(121) (122) (123)
(221) (141)
(1121) (222)
(1211) (321)
(1122)
(1212)
(1221)
(2121)
(2211)
(11121)
(11211)
(12111)
The odd version is A274230.
(End)

Examples

			a(4) = 4 because we have: 0011, 0110, 0111, 1011.
		

Crossrefs

The complement is counted by A000071(n) = A001911(n) + 1.
For the contiguous pattern (1,1) or (0,0) we have A000225.
For the contiguous pattern (1,0,1) or (0,1,0) we have A000253.
For the contiguous pattern (1,0) or (0,1) we have A000295.
Numbers whose binary expansion is of this type are A004750.
For the contiguous pattern (1,1,1) or (0,0,0) we have A050231.
The not necessarily contiguous version is A324172.

Programs

  • Mathematica
    nn=40;a=x/(1-x);CoefficientList[Series[a^2 x/(1-a x)/(1-2x),{x,0,nn}],x]
    (* second program *)
    Table[Length[Select[Tuples[{0,1},n],MatchQ[#,{_,0,1,1,_}]&]],{n,0,10}] (* Gus Wiseman, Jun 26 2022 *)
  • PARI
    concat(vector(3), Vec(x^3/(-2*x^4+x^3+4*x^2-4*x+1) + O(x^40))) \\ Colin Barker, Nov 03 2016

Formula

O.g.f.: x^3/( (1-x)^2*(1-x^2/(1-x))*(1-2x) ).
a(n) ~ 2^n.
From Colin Barker, Nov 03 2016: (Start)
a(n) = (1 + 2^n - (2^(-n)*((1-sqrt(5))^n*(-2+sqrt(5)) + (1+sqrt(5))^n*(2+sqrt(5))))/sqrt(5)).
a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4) for n > 3. (End)
a(n) = 2^n - Fibonacci(n+3) + 1. - Ehren Metcalfe, Dec 27 2018
E.g.f.: 2*exp(x/2)*(5*exp(x)*cosh(x/2) - 5*cosh(sqrt(5)*x/2) - 2*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Apr 06 2022

A268814 Number of purely crossing partitions of [n].

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 5, 14, 62, 298, 1494, 8140, 47146, 289250, 1873304, 12756416, 91062073, 679616480, 5290206513, 42858740990, 360686972473, 3147670023632, 28439719809159, 265647698228954, 2561823514680235, 25475177517626196, 260922963832247729, 2749617210928715246
Offset: 0

Views

Author

Michel Marcus, Feb 14 2016

Keywords

Comments

For the definition of a purely crossing partition refer to Dykema link (see PC(n) Definition 1.2 and Table 2).
From Gus Wiseman, Feb 23 2019: (Start)
For n >= 1, a set partition of {1,...,n} is purely crossing if it is topologically connected (A099947), has no successive elements in the same block (A000110(n - 1)), and the first and last vertices belong to different blocks (A005493(n - 2)). For example, the a(4) = 1, a(6) = 5, and a(7) = 14 purely crossing set partitions are:
{{13}{24}} {{135}{246}} {{13}{246}{57}}
{{13}{25}{46}} {{13}{257}{46}}
{{14}{25}{36}} {{135}{26}{47}}
{{14}{26}{35}} {{135}{27}{46}}
{{15}{24}{36}} {{136}{24}{57}}
{{136}{25}{47}}
{{14}{257}{36}}
{{14}{26}{357}}
{{146}{25}{37}}
{{146}{27}{35}}
{{15}{246}{37}}
{{15}{247}{36}}
{{16}{24}{357}}
{{16}{247}{35}}
(End)

Examples

			G.f.: A(x) = 1 + x^4 + 5*x^6 + 14*x^7 + 62*x^8 + 298*x^9 + 1494*x^10 + 8140*x^11 + 47146*x^12 +...
		

Crossrefs

Programs

  • Mathematica
    n = 30; F = x*Sum[BellB[k] x^k, {k, 0, n}] + O[x]^n; B = ComposeSeries[1/( InverseSeries[F, w]/w)-1, x/(1+x) + O[x]^n]; A = (B-x)/(1+x); Join[{1}, CoefficientList[A, x] // Rest] (* Jean-François Alcover, Feb 23 2016, adapted from K. J. Dykema's code *)
    intvQ[set_]:=Or[set=={},Sort[set]==Range[Min@@set,Max@@set]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],And[!MatchQ[#,{_,{_,x_,y_,_},_}/;x+1==y],#=={}||And@@Not/@intvQ/@Union@@@Subsets[#,{1,Length[#]-1}],#=={}||Position[#,1][[1,1]]!=Position[#,n][[1,1]]]&]],{n,0,10}] (* Gus Wiseman, Feb 23 2019 *)
  • PARI
    lista(nn) = {c = x/serreverse(x*serlaplace(exp(exp(x+x*O(x^nn)) -1))); b = subst(c, x, x/(1+x)+ O(x^nn)); vb = Vec(b-1); va = vector(#vb); va[1] = 0; va[2] = 0; for (k=3, #va, va[k] = vb[k] - va[k-1]; ); concat(1, va); }
    
  • PARI
    {a(n) = my(A=1+x^3); for(i=1, n, A = sum(m=0, n, x^m/prod(k=1, m, (1+x)^2*A - k*x +x*O(x^n)) )/(1+x) ); polcoeff( A, n)}
    for(n=0,35,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016
    
  • PARI
    {Stirling2(n, k) = n!*polcoeff(((exp(x+x*O(x^n)) - 1)^k)/k!, n)}
    {Bell(n) = sum(k=0,n, Stirling2(n, k) )}
    {a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, Bell(m)*x^m/((1+x +x*O(x^n))^(2*m+1)*A^m)) ); polcoeff(A, n)}
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016

Formula

G.f.: G(x) satisfies B(x) = x + (1 + x)*G(x) where B(x) is the g.f. of A268815 (see A(x) in Dykema link p. 7).
From Paul D. Hanna, Mar 07 2016: (Start)
O.g.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} A000110(n)*x^n / ((1+x)^(2*n+1) * A(x)^n), where A000110 are the Bell numbers.
(2) A(x) = 1/(1+x) * Sum_{n>=0} x^n / Product_{k=1..n} ((1+x)^2*A(x) - k*x).
(3) A(x) = 1/(1+x - x/((1+x)*A(x) - 1*x/(1+x - x/((1+x)*A(x) - 2*x/(1+x - x/((1+x)*A(x) - 3*x/(1+x - x/((1+x)*A(x) - 4*x/(1+x - x/((1+x)*A(x) -...)))))))))), a continued fraction. (End)

A324323 Regular triangle read by rows where T(n,k) is the number of topologically connected set partitions of {1,...,n} with k blocks, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 5, 0, 0, 0, 0, 1, 16, 4, 0, 0, 0, 0, 1, 42, 42, 0, 0, 0, 0, 0, 1, 99, 258, 27, 0, 0, 0, 0, 0, 1, 219, 1222, 465, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A set partition of {1,...,n} is topologically connected if the graph whose vertices are the blocks and whose edges are crossing pairs of blocks is connected, where two blocks cross each other if they are of the form {{...x...y...},{...z...t...}} for some x < z < y < t or z < x < t < y.

Examples

			Triangle begins:
    1
    0    1
    0    1    0
    0    1    0    0
    0    1    1    0    0
    0    1    5    0    0    0
    0    1   16    4    0    0    0
    0    1   42   42    0    0    0    0
    0    1   99  258   27    0    0    0    0
    0    1  219 1222  465    0    0    0    0    0
Row n = 6 counts the following set partitions:
  {{123456}}  {{1235}{46}}  {{13}{25}{46}}
              {{124}{356}}  {{14}{25}{36}}
              {{1245}{36}}  {{14}{26}{35}}
              {{1246}{35}}  {{15}{24}{36}}
              {{125}{346}}
              {{13}{2456}}
              {{134}{256}}
              {{1345}{26}}
              {{1346}{25}}
              {{135}{246}}
              {{1356}{24}}
              {{136}{245}}
              {{14}{2356}}
              {{145}{236}}
              {{146}{235}}
              {{15}{2346}}
		

Crossrefs

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],Length[crosscmpts[#]]<=1&&Length[#]==k&]],{n,0,6},{k,0,n}]

A326290 Number of non-crossing n-vertex graphs with loops.

Original entry on oeis.org

1, 2, 8, 64, 768, 11264, 184320, 3227648, 59179008, 1121714176, 21803040768, 432218832896, 8705009516544, 177618573852672, 3663840373899264, 76277945940836352, 1600706475536154624, 33823752545680490496, 719051629204296695808, 15368152475218787434496
Offset: 0

Views

Author

Gus Wiseman, Sep 12 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b.

Examples

			The a(0) = 1 through a(2) = 8 non-crossing edge sets with loops:
  {}  {}    {}
      {11}  {11}
            {12}
            {22}
            {11,12}
            {11,22}
            {12,22}
            {11,12,22}
		

Crossrefs

Crossing and nesting simple graphs are (both) A326210, while non-crossing, non-nesting simple graphs are A326244.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x
    				
  • PARI
    seq(n)=Vec(1+3*x-4*x^2 -x*sqrt(1-24*x+16*x^2 + O(x^n))) \\ Andrew Howroyd, Sep 14 2019

Formula

From Andrew Howroyd, Sep 14 2019: (Start)
a(n) = 2^n * A054726(n).
G.f.: 1 + 3*x - 4*x^2 - x*sqrt(1 - 24*x + 16*x^2). (End)

Extensions

Terms a(6) and beyond from Andrew Howroyd, Sep 14 2019

A306551 Number of non-double-crossing set partitions of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 202, 863, 3999, 19880, 105134, 587479, 3449505
Offset: 0

Views

Author

Gus Wiseman, Feb 23 2019

Keywords

Comments

Two blocks of a set partitions double-cross each other if they are of the form {{...a...b...c...},{...x...y...z...}} for some a < x < b < y < c < z or x < a < y < b < z < c.

Examples

			Most small set partitions are not double-crossing. The smallest that is double-crossing is {{1,3,5},{2,4,6}}.
		

Crossrefs

Programs

  • Mathematica
    nonXXQ[stn_]:=!MatchQ[stn,{_,{_,a_,_,b_,_,c_,_},_,{_,x_,_,y_,_,z_,_},_}/;a_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],nonXXQ]],{n,0,8}]

A306558 Number of double-crossing set partitions of {1,...,n}.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 14, 141, 1267, 10841, 91091, 764092
Offset: 0

Views

Author

Gus Wiseman, Feb 23 2019

Keywords

Comments

Two blocks of a set partitions double-cross each other if they are of the form {{...a...b...c...},{...x...y...z...}} for some a < x < b < y < c < z or x < a < y < b < z < c.

Examples

			The a(7) = 14 double-crossing set partitions:
  {{1,3,5},{2,4,6,7}}
  {{1,3,6},{2,4,5,7}}
  {{1,4,6},{2,3,5,7}}
  {{1,2,4,6},{3,5,7}}
  {{1,3,4,6},{2,5,7}}
  {{1,3,5,6},{2,4,7}}
  {{1,3,5,7},{2,4,6}}
  {{1},{2,4,6},{3,5,7}}
  {{1,3,5},{2,4,6},{7}}
  {{1,3,5},{2,4,7},{6}}
  {{1,3,6},{2,4,7},{5}}
  {{1,3,6},{2,5,7},{4}}
  {{1,4,6},{2},{3,5,7}}
  {{1,4,6},{2,5,7},{3}}
		

Crossrefs

Programs

  • Mathematica
    croXXQ[stn_]:=MatchQ[stn,{_,{_,a_,_,b_,_,c_,_},_,{_,x_,_,y_,_,z_,_},_}/;a_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],croXXQ]],{n,0,8}]

A326292 Number of crossing integer partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 43, 57, 80, 105, 142, 186, 248, 320, 421, 539, 698, 889, 1140, 1438, 1827, 2291, 2882, 3593, 4489, 5559, 6902, 8503, 10484, 12853, 15763
Offset: 0

Views

Author

Gus Wiseman, Oct 03 2019

Keywords

Comments

A multiset partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y. An integer partition is crossing if, by replacing each part with its multiset of prime indices, we obtain a crossing multiset partition.

Examples

			The a(31) = 1 through a(36) = 7 partitions:
  21,10  21,10,1  21,10,2    21,10,3      21,10,4        21,10,5
                  21,10,1,1  21,10,2,1    21,10,2,2      21,10,3,2
                             21,10,1,1,1  21,10,3,1      21,10,4,1
                                          21,10,2,1,1    21,10,2,2,1
                                          21,10,1,1,1,1  21,10,3,1,1
                                                         21,10,2,1,1,1
                                                         21,10,1,1,1,1,1
		

Crossrefs

The Heinz numbers of these partitions are given by A324170.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

Extensions

More terms from Jinyuan Wang, Jun 28 2020
Previous Showing 11-17 of 17 results.