A324771
Numbers divisible by at least one of their prime indices > 1.
Original entry on oeis.org
6, 12, 15, 18, 24, 28, 30, 36, 42, 45, 48, 54, 55, 56, 60, 66, 72, 75, 78, 84, 90, 96, 102, 105, 108, 110, 112, 114, 119, 120, 126, 132, 135, 138, 140, 144, 150, 152, 156, 162, 165, 168, 174, 180, 186, 192, 195, 196, 198, 204, 207, 210, 216, 220, 222, 224, 225
Offset: 1
The sequence of terms together with their prime indices begins:
6: {1,2}
12: {1,1,2}
15: {2,3}
18: {1,2,2}
24: {1,1,1,2}
28: {1,1,4}
30: {1,2,3}
36: {1,1,2,2}
42: {1,2,4}
45: {2,2,3}
48: {1,1,1,1,2}
54: {1,2,2,2}
55: {3,5}
56: {1,1,1,4}
60: {1,1,2,3}
66: {1,2,5}
72: {1,1,1,2,2}
75: {2,3,3}
78: {1,2,6}
84: {1,1,2,4}
-
Select[Range[100],Or@@Cases[If[#==1,{},FactorInteger[#]],{p_?(#>2&),_}:>Divisible[#,PrimePi[p]]]&]
A331913
Lexicographically earliest sequence containing 1 and all positive integers that have exactly one distinct prime index already in the sequence.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 26, 27, 31, 32, 39, 49, 52, 53, 58, 59, 64, 65, 67, 74, 81, 82, 83, 86, 87, 91, 94, 97, 101, 103, 104, 111, 116, 117, 121, 122, 123, 125, 127, 128, 129, 131, 141, 142, 143, 145, 146, 148, 158, 164, 167, 172, 178
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 52: {1,1,6} 116: {1,1,10}
2: {1} 53: {16} 117: {2,2,6}
3: {2} 58: {1,10} 121: {5,5}
4: {1,1} 59: {17} 122: {1,18}
5: {3} 64: {1,1,1,1,1,1} 123: {2,13}
7: {4} 65: {3,6} 125: {3,3,3}
8: {1,1,1} 67: {19} 127: {31}
9: {2,2} 74: {1,12} 128: {1,1,1,1,1,1,1}
11: {5} 81: {2,2,2,2} 129: {2,14}
16: {1,1,1,1} 82: {1,13} 131: {32}
17: {7} 83: {23} 141: {2,15}
19: {8} 86: {1,14} 142: {1,20}
23: {9} 87: {2,10} 143: {5,6}
25: {3,3} 91: {4,6} 145: {3,10}
26: {1,6} 94: {1,15} 146: {1,21}
27: {2,2,2} 97: {25} 148: {1,1,12}
31: {11} 101: {26} 158: {1,22}
32: {1,1,1,1,1} 103: {27} 164: {1,1,13}
39: {2,6} 104: {1,1,1,6} 167: {39}
49: {4,4} 111: {2,12} 172: {1,1,14}
Numbers S without all prime indices in S are
A324694.
Numbers S without any prime indices in S are
A324695.
Numbers S with at most one prime index in S are
A331784.
Numbers S with exactly one prime index in S are
A331785.
Numbers S with at most one distinct prime index in S are
A331912.
A324769
Matula-Goebel numbers of fully anti-transitive rooted trees.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 64, 65, 67, 71, 73, 77, 79, 81, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 129, 131, 133, 137, 139, 143, 147
Offset: 1
The sequence of fully anti-transitive rooted trees together with their Matula-Goebel numbers begins:
1: o
2: (o)
3: ((o))
4: (oo)
5: (((o)))
7: ((oo))
8: (ooo)
9: ((o)(o))
11: ((((o))))
13: ((o(o)))
16: (oooo)
17: (((oo)))
19: ((ooo))
21: ((o)(oo))
23: (((o)(o)))
25: (((o))((o)))
27: ((o)(o)(o))
29: ((o((o))))
31: (((((o)))))
32: (ooooo)
35: (((o))(oo))
37: ((oo(o)))
41: (((o(o))))
43: ((o(oo)))
47: (((o)((o))))
49: ((oo)(oo))
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
fullantiQ[n_]:=Intersection[Union@@Rest[FixedPointList[Union@@primeMS/@#&,primeMS[n]]],primeMS[n]]=={};
Select[Range[100],fullantiQ]
A358456
Number of recursively bi-anti-transitive ordered rooted trees with n nodes.
Original entry on oeis.org
1, 1, 2, 3, 7, 17, 47, 117, 321, 895, 2556, 7331, 21435, 63116, 187530
Offset: 1
The a(1) = 1 through a(6) = 17 trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (((o))o) (((o))oo)
(((oo))) (((oo))o)
((o)(o)) (((ooo)))
(o((o))) ((o)(oo))
((((o)))) ((oo)(o))
(o((o))o)
(o((oo)))
(oo((o)))
((((o)))o)
((((o))o))
((((oo))))
(((o)(o)))
((o((o))))
(o(((o))))
(((((o)))))
A306844 counts anti-transitive rooted trees.
Cf.
A318185,
A324695,
A324751,
A324756,
A324758,
A324764,
A324767,
A324768,
A324838,
A324840,
A324844.
-
aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[aot[n],FreeQ[#,{_,x_,_,{_,x_,_},_}|{_,{_,x_,_},_,x_,_}]&]],{n,10}]
A358454
Number of weakly transitive ordered rooted trees with n nodes.
Original entry on oeis.org
1, 1, 1, 3, 6, 13, 33, 80, 201, 509, 1330, 3432, 8982, 23559, 62189
Offset: 1
The a(1) = 1 through a(6) = 13 trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)o) ((o)oo) ((o)ooo)
(o(o)) ((oo)o) ((oo)oo)
(o(o)o) ((ooo)o)
(o(oo)) (o(o)oo)
(oo(o)) (o(oo)o)
(o(ooo))
(oo(o)o)
(oo(oo))
(ooo(o))
((o)(o)o)
((o)o(o))
(o(o)(o))
A306844 counts anti-transitive rooted trees.
-
aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[aot[n],Complement[Union@@#,#]=={}&]],{n,10}]
A358455
Number of recursively anti-transitive ordered rooted trees with n nodes.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 72, 206, 608, 1830, 5612, 17442, 54866, 174252, 558072, 1800098
Offset: 1
The a(1) = 1 through a(5) = 10 trees:
o (o) (oo) (ooo) (oooo)
((o)) ((o)o) ((o)oo)
((oo)) ((oo)o)
(((o))) ((ooo))
(((o))o)
(((o)o))
(((oo)))
((o)(o))
(o((o)))
((((o))))
A306844 counts anti-transitive rooted trees.
Cf.
A318185,
A324695,
A324751,
A324756,
A324758,
A324764,
A324767,
A324768,
A324838,
A324840,
A324844.
-
aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[aot[n],FreeQ[#,{_,x_,_,{_,x_,_},_}]&]],{n,10}]
A324752
Number of strict integer partitions of n not containing 1 or any prime indices of the parts.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 2, 3, 1, 4, 4, 4, 5, 6, 7, 10, 9, 12, 12, 16, 17, 22, 22, 26, 31, 35, 37, 46, 50, 55, 66, 70, 82, 90, 101, 114, 127, 143, 159, 172, 202, 215, 246, 267, 301, 327, 366, 402, 447, 491, 545, 600, 655, 722, 795, 875, 964, 1050, 1152, 1259, 1383
Offset: 0
The a(2) = 1 through a(17) = 12 strict integer partitions (A...H = 10...17):
2 3 4 5 6 7 8 9 A B C D E F G H
42 43 54 64 65 75 76 86 87 97 98
52 63 73 83 84 85 95 96 A6 A7
72 82 542 93 94 A4 A5 C4 B6
A2 B2 B3 B4 D3 C5
643 752 C3 E2 D4
842 D2 763 E3
654 943 854
843 A42 863
852 872
A52
B42
An example for n = 60 is (19,14,13,7,5,2), with prime indices:
19: {8}
14: {1,4}
13: {6}
7: {4}
5: {3}
2: {1}
None of these prime indices {1,3,4,6,8} belong to the partition, as required.
Cf.
A000720,
A001462,
A007097,
A074971,
A078374,
A112798,
A276625,
A290822,
A305713,
A306844,
A324764.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}]
A324757
Number of integer partitions of n not containing 1 or any prime indices of the parts.
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 4, 3, 4, 6, 9, 7, 14, 12, 19, 21, 28, 29, 41, 45, 56, 64, 81, 89, 114, 125, 154, 176, 211, 236, 288, 324, 383, 432, 514, 578, 678, 766, 891, 1006, 1176, 1306, 1525, 1711, 1966, 2212, 2538, 2839, 3258, 3646, 4150, 4647, 5288, 5891, 6698, 7472
Offset: 0
The a(2) = 1 through a(10) = 9 integer partitions:
(2) (3) (4) (5) (6) (7) (8) (9) (A)
(22) (33) (43) (44) (54) (55)
(42) (52) (422) (63) (64)
(222) (2222) (72) (73)
(333) (82)
(522) (433)
(442)
(4222)
(22222)
Cf.
A000720,
A000837,
A001462,
A051424,
A112798,
A276625,
A290822,
A304360,
A306844,
A324764,
A324742,
A324753,
A324756.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}]
A324761
Heinz numbers of integer partitions not containing 1 or any prime indices of the parts.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 65, 67, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 113, 115, 121, 123, 125, 127, 129, 131, 133, 137, 139, 143, 147, 149
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
17: {7}
19: {8}
21: {2,4}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
33: {2,5}
35: {3,4}
37: {12}
41: {13}
43: {14}
The subset version is
A324742, with maximal case
A324763. The strict integer partition version is
A324752. The integer partition version is
A324757. An infinite version is
A324695.
Cf.
A000720,
A001221,
A007097,
A056239,
A112798,
A276625,
A289509,
A290822,
A304360,
A306844,
A324743,
A324751,
A324756,
A324758,
A324764.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1,100,2],Intersection[primeMS[#],Union@@primeMS/@primeMS[#]]=={}&]
A324841
Matula-Goebel numbers of fully recursively anti-transitive rooted trees.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 21, 23, 25, 27, 31, 32, 35, 49, 51, 53, 57, 59, 63, 64, 67, 73, 77, 81, 83, 85, 95, 97, 103, 115, 121, 125, 127, 128, 131, 133, 147, 149, 153, 159, 161, 171, 175, 177, 187, 189, 201, 209, 217, 227, 233, 241, 243, 245
Offset: 1
The sequence of fully recursively anti-transitive rooted trees together with their Matula-Goebel numbers begins:
1: o
2: (o)
3: ((o))
4: (oo)
5: (((o)))
7: ((oo))
8: (ooo)
9: ((o)(o))
11: ((((o))))
16: (oooo)
17: (((oo)))
19: ((ooo))
21: ((o)(oo))
23: (((o)(o)))
25: (((o))((o)))
27: ((o)(o)(o))
31: (((((o)))))
32: (ooooo)
35: (((o))(oo))
49: ((oo)(oo))
51: ((o)((oo)))
53: ((oooo))
57: ((o)(ooo))
59: ((((oo))))
63: ((o)(o)(oo))
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
fratQ[n_]:=And[Intersection[Union@@Rest[FixedPointList[Union@@primeMS/@#&,primeMS[n]]],primeMS[n]]=={},And@@fratQ/@primeMS[n]];
Select[Range[100],fratQ]
Comments