cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 74 results. Next

A331381 Number of integer partitions of n whose sum of primes of parts is divisible by their product of parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 5, 2, 6, 6, 5, 5, 7, 4, 7, 7, 7, 10, 8, 9, 6, 10, 9, 9, 15, 7, 12, 10, 14, 10, 10, 8, 8, 15, 10, 7, 16, 13, 9, 10, 14, 12, 10, 8, 14, 11, 13, 11, 16, 15, 14, 15, 15, 10, 14, 18, 11, 12, 13, 13, 18, 21, 15, 16, 19, 16, 15, 8, 17, 17
Offset: 0

Views

Author

Gus Wiseman, Jan 16 2020

Keywords

Examples

			The a(n) partitions for n = 1, 5, 7, 8, 9, 13, 14:
  1  221    43       311111    63         7411           65111
     311    511      11111111  441        721111         322211111
     11111  3211               711        43111111       311111111111
            22111              42111      421111111      11111111111111
            1111111            2211111    3211111111
                               111111111  22111111111
                                          1111111111111
		

Crossrefs

The Heinz numbers of these partitions are given by A331382.
Numbers divisible by the sum of their prime factors are A036844.
Partitions whose product is divisible by their sum are A057568.
Numbers divisible by the sum of their prime indices are A324851.
Product of prime indices is divisible by sum of prime indices: A326149.
Partitions whose Heinz number is divisible by their sum are A330950.
Sum of prime factors is divisible by sum of prime indices: A331380
Partitions whose product is equal to their sum of primes are A331383.
Product of prime indices equals sum of prime factors: A331384.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Plus@@Prime/@#,Times@@#]&]],{n,0,30}]

A352490 Nonexcedance set of A122111. Numbers k > A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

4, 8, 12, 16, 18, 24, 27, 32, 36, 40, 48, 50, 54, 60, 64, 72, 80, 81, 90, 96, 100, 108, 112, 120, 128, 135, 140, 144, 150, 160, 162, 168, 180, 192, 196, 200, 216, 224, 225, 240, 243, 250, 252, 256, 270, 280, 288, 300, 315, 320, 324, 336, 352, 360, 375, 378
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is greater than that of their conjugate.

Examples

			The terms together with their prime indices begin:
    4: (1,1)
    8: (1,1,1)
   12: (2,1,1)
   16: (1,1,1,1)
   18: (2,2,1)
   24: (2,1,1,1)
   27: (2,2,2)
   32: (1,1,1,1,1)
   36: (2,2,1,1)
   40: (3,1,1,1)
   48: (2,1,1,1,1)
   50: (3,3,1)
   54: (2,2,2,1)
   60: (3,2,1,1)
   64: (1,1,1,1,1,1)
For example, the partition (4,4,1,1) has Heinz number 196 and its conjugate (4,2,2,2) has Heinz number 189, and 196 > 189, so 196 is in the sequence, and 189 is not.
		

Crossrefs

These partitions are counted by A000701.
The opposite version is A352487, weak A352489.
The weak version is A352488, counted by A046682.
These are the positions of positive terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352521 counts compositions by subdiagonals, rank statistic A352514.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#>Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) > A122111(a(n)).

A324925 Number of integer partitions y of n such that Product_{i in y} prime(i)/i is an integer.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 5, 5, 8, 9, 11, 17, 19, 21, 28, 32, 40, 51, 57, 67, 83, 96, 118, 142, 160, 189, 224, 260, 307, 363, 412, 479, 561, 649, 749, 874, 997, 1141, 1321, 1518, 1734, 1994, 2274, 2582, 2960, 3374, 3837, 4370, 4950, 5604, 6371, 7208, 8157, 9231, 10392
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2019

Keywords

Comments

The Heinz numbers of these integer partitions are given by A324850.

Examples

			The a(1) = 1 through a(8) = 5 integer partitions:
  (1)  (11)  (21)   (211)   (2111)   (321)     (3211)     (32111)
             (111)  (1111)  (11111)  (411)     (4111)     (41111)
                                     (2211)    (22111)    (221111)
                                     (21111)   (211111)   (2111111)
                                     (111111)  (1111111)  (11111111)
For example, (3,2,1,1) is such a partition because (2/1) * (2/1) * (3/2) * (5/3) = 10 is an integer.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[Product[Prime[i]/i,{i,#}]]&]],{n,0,30}]

A329382 Product of exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 4, 2, 1, 3, 1, 2, 4, 4, 1, 6, 1, 3, 4, 2, 1, 4, 8, 2, 9, 3, 1, 6, 1, 5, 4, 2, 8, 8, 1, 2, 4, 4, 1, 6, 1, 3, 9, 2, 1, 5, 16, 12, 4, 3, 1, 12, 8, 4, 4, 2, 1, 8, 1, 2, 9, 6, 8, 6, 1, 3, 4, 12, 1, 10, 1, 2, 18, 3, 16, 6, 1, 5, 16, 2, 1, 8, 8, 2, 4, 4, 1, 12, 16, 3, 4, 2, 8, 6, 1, 24, 9, 16, 1, 6, 1, 4, 18
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2019

Keywords

Comments

Also the product of parts of the conjugate of the integer partition with Heinz number n, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). For example, the partition (3,2) with Heinz number 15 has conjugate (2,2,1) with product a(15) = 4. - Gus Wiseman, Mar 27 2022

Crossrefs

This is the conjugate version of A003963 (product of prime indices).
The solutions to a(n) = A003963(n) are A325040, counted by A325039.
The Heinz number of the conjugate partition is given by A122111.
These are the row products of A321649 and of A321650.
A000700 counts self-conj partitions, ranked by A088902, complement A330644.
A008480 counts permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798 and of A296150.
A124010 gives prime signature, sorted A118914, sum A001222.
A238744 gives the conjugate of prime signature, rank A238745.

Programs

  • Mathematica
    Table[Times @@ FactorInteger[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]][[All, -1]], {n, 105}] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A005361(n) = factorback(factor(n)[, 2]); \\ from A005361
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A329382(n) = A005361(A108951(n));
    
  • PARI
    A329382(n) = if(1==n,1,my(f=factor(n),e=0,m=1); forstep(i=#f~,1,-1, e += f[i,2]; m *= e^(primepi(f[i,1])-if(1==i,0,primepi(f[i-1,1])))); (m)); \\ Antti Karttunen, Jan 14 2020

Formula

a(n) = A005361(A108951(n)).
A329605(n) >= a(n) >= A329617(n) >= A329378(n).
a(A019565(n)) = A284001(n).
From Antti Karttunen, Jan 14 2020: (Start)
If n = p(k1)^e(k1) * p(k2)^e(k2) * p(k3)^e(k3) * ... * p(kx)^e(kx), with p(n) = A000040(n) and k1 > k2 > k3 > ... > kx, then a(n) = e(k1)^(k1-k2) * (e(k1)+e(k2))^(k2-k3) * (e(k1)+e(k2)+e(k3))^(k3-k4) * ... * (e(k1)+e(k2)+...+e(kx))^kx.
a(n) = A000005(A331188(n)) = A329605(A052126(n)).
(End)
a(n) = A003963(A122111(n)). - Gus Wiseman, Mar 27 2022

A331378 Numbers whose product of prime indices is divisible by their sum of prime factors.

Original entry on oeis.org

35, 65, 95, 98, 154, 189, 297, 324, 363, 364, 375, 450, 476, 585, 623, 702, 763, 765, 791, 812, 826, 918, 938, 994, 1036, 1064, 1106, 1144, 1148, 1162, 1197, 1225, 1287, 1288, 1300, 1305, 1309, 1449, 1470, 1484, 1517, 1566, 1593, 1665, 1708, 1710, 1736, 1769
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    35: {3,4}
    65: {3,6}
    95: {3,8}
    98: {1,4,4}
   154: {1,4,5}
   189: {2,2,2,4}
   297: {2,2,2,5}
   324: {1,1,2,2,2,2}
   363: {2,5,5}
   364: {1,1,4,6}
   375: {2,3,3,3}
   450: {1,2,2,3,3}
   476: {1,1,4,7}
   585: {2,2,3,6}
   623: {4,24}
   702: {1,2,2,2,6}
   763: {4,29}
   765: {2,2,3,7}
   791: {4,30}
   812: {1,1,4,10}
For example, 450 = prime(1)*prime(2)*prime(2)*prime(3)*prime(3) has prime indices {1,2,2,3,3} and prime factors {2,3,3,5,5}, and since 36 is divisible by 18, 450 is in the sequence.
		

Crossrefs

These are the Heinz numbers of the partitions counted by A330954.
Numbers divisible by the sum of their prime factors are A036844.
Numbers divisible by the sum of their prime indices are A324851.
Sum of prime indices divides product of prime indices: A326149.
Partitions whose Heinz number is divisible by their sum are A330950.
Partitions whose product divides their sum of primes are A331381.
Product of prime indices equals sum of prime factors: A331384.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,1000],Divisible[Times@@primeMS[#],Total[Prime/@primeMS[#]]]&]

A331384 Numbers whose sum of prime factors is equal to their product of prime indices.

Original entry on oeis.org

35, 65, 95, 98, 154, 324, 364, 476, 623, 763, 791, 812, 826, 938, 994, 1036, 1064, 1106, 1144, 1148, 1162, 1288, 1484, 1708, 1736, 2044, 2408, 2632, 4320, 5408, 6688, 6974, 8000, 10208, 12623, 12701, 12779, 14144, 19624, 23144, 25784, 26048, 44176, 47696
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Numbers k such that A001414(k) = A003963(k). - Jason Yuen, Dec 19 2024

Examples

			The sequence of terms together with their prime indices begins:
     35: {3,4}
     65: {3,6}
     95: {3,8}
     98: {1,4,4}
    154: {1,4,5}
    324: {1,1,2,2,2,2}
    364: {1,1,4,6}
    476: {1,1,4,7}
    623: {4,24}
    763: {4,29}
    791: {4,30}
    812: {1,1,4,10}
    826: {1,4,17}
    938: {1,4,19}
    994: {1,4,20}
   1036: {1,1,4,12}
   1064: {1,1,1,4,8}
   1106: {1,4,22}
   1144: {1,1,1,5,6}
   1148: {1,1,4,13}
For example, 476 has prime factors {2,2,7,17} and prime indices {1,1,4,7}, and 2+2+7+17 = 28 = 1*1*4*7, so 476 is in the sequence.
		

Crossrefs

These are the Heinz numbers of the partitions counted by A331383.
Numbers divisible by the sum of their prime factors are A036844.
Partitions whose product is divisible by their sum are A057568.
Numbers divisible by the sum of their prime indices are A324851.
Product of prime indices is divisible by sum of prime indices: A326149.
Partitions whose Heinz number is divisible by their sum are A330950.
Partitions whose Heinz number is divisible by their sum of primes: A330953.
Sum of prime factors is divisible by sum of prime indices: A331380
Partitions whose product divides their sum of primes are A331381.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Times@@primeMS[#]==Plus@@Prime/@primeMS[#]&]

A355734 Least k such that there are exactly n multisets that can be obtained by choosing a divisor of each prime index of k.

Original entry on oeis.org

1, 3, 7, 13, 21, 35, 39, 89, 133, 105, 91, 195, 351, 285, 247, 333, 273, 481, 455, 555, 623, 801, 791, 741, 1359, 1157, 1281, 1335, 1365, 1443, 1977, 1729, 1967, 1869, 2109, 3185, 2373, 2769, 2639, 4361, 3367, 3653, 3885, 3471, 4613, 5883, 5187, 5551, 6327
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2022

Keywords

Comments

This is the position of first appearance of n in A355733.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    1: {}
    3: {2}
    7: {4}
   13: {6}
   21: {2,4}
   35: {3,4}
   39: {2,6}
   89: {24}
  133: {4,8}
  105: {2,3,4}
   91: {4,6}
  195: {2,3,6}
  351: {2,2,2,6}
For example, the choices for a(12) = 195 are:
  {1,1,1}  {1,2,2}  {1,3,6}
  {1,1,2}  {1,2,3}  {2,2,3}
  {1,1,3}  {1,2,6}  {2,3,3}
  {1,1,6}  {1,3,3}  {2,3,6}
		

Crossrefs

Counting all choices of divisors gives A355732, firsts of A355731.
Positions of first appearances in A355733.
Choosing weakly increasing divisors gives A355736, firsts of A355735.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    az=Table[Length[Union[Sort/@Tuples[Divisors/@primeMS[n]]]],{n,1000}];
    Table[Position[az,k][[1,1]],{k,mnrm[az]}]

A353394 Product of prime shadows of prime indices of n (with multiplicity).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 2, 2, 4, 3, 4, 1, 2, 4, 5, 2, 6, 2, 3, 2, 4, 4, 8, 3, 4, 4, 2, 1, 4, 2, 6, 4, 6, 5, 8, 2, 2, 6, 4, 2, 8, 3, 4, 2, 9, 4, 4, 4, 7, 8, 4, 3, 10, 4, 2, 4, 6, 2, 12, 1, 8, 4, 2, 2, 6, 6, 6, 4, 4, 6, 8, 5, 6, 8, 4, 2, 16, 2, 2, 6, 4, 4
Offset: 1

Views

Author

Gus Wiseman, May 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			We have 42 = prime(1)*prime(2)*prime(4), so a(42) = 1*2*3 = 6.
		

Crossrefs

Positions of first appearances are A353397.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914, product A005361.
A181819 gives prime shadow, with an inverse A181821.
A324850 lists numbers divisible by the product of their prime indices.
A325131 lists numbers relatively prime to their prime shadow.
A325755 lists numbers divisible by their prime shadow, quotient also A325756, with recursion A353393.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Table[Times@@red/@primeMS[n],{n,100}]

Formula

a(n) = Product_i A181819(A112798(n,i)).
Positions where a(n) = A003963(n) are A003586.
Positions where a(n) = A005361(n) are A353399, counted by A353398.
Positions where a(n) = A181819(n) are A353395, counted by A353396.

A353399 Numbers whose product of prime exponents equals the product of prime shadows of its prime indices.

Original entry on oeis.org

1, 2, 12, 20, 36, 44, 56, 68, 100, 124, 164, 184, 208, 236, 240, 268, 332, 436, 464, 484, 508, 528, 608, 628, 688, 716, 720, 752, 764, 776, 816, 844, 880, 964, 1108, 1132, 1156, 1168, 1200, 1264, 1296, 1324, 1344, 1360, 1412, 1468, 1488, 1584, 1604, 1616, 1724
Offset: 1

Views

Author

Gus Wiseman, May 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The terms together with their prime indices begin:
     1: {}
     2: {1}
    12: {1,1,2}
    20: {1,1,3}
    36: {1,1,2,2}
    44: {1,1,5}
    56: {1,1,1,4}
    68: {1,1,7}
   100: {1,1,3,3}
   124: {1,1,11}
   164: {1,1,13}
   184: {1,1,1,9}
   208: {1,1,1,1,6}
   236: {1,1,17}
   240: {1,1,1,1,2,3}
		

Crossrefs

Product of prime indices is A003963, counted by A339095.
The LHS (product of exponents) is A005361, counted by A266477.
The RHS (product of shadows) is A353394, first appearances A353397.
A related comparison is A353395, counted by A353396.
The partitions are counted by A353398.
Taking indices instead of exponents on the LHS gives A353503.
A001222 counts prime factors with multiplicity, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
A325131 lists numbers relatively prime to their prime shadow.
Numbers divisible by their prime shadow:
- counted by A325702
- listed by A325755
- co-recursive version A325756
- nonprime recursive version A353389
- recursive version A353393
- recursive version counted by A353426

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Select[Range[100],Times@@red/@primeMS[#]==Times@@Last/@FactorInteger[#]&]

Formula

A005361(a(n)) = A353394(a(n)).

A352489 Weak excedance set of A122111. Numbers k <= A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is less than or equal to that of their conjugate.

Examples

			The terms together with their prime indices begin:
   1: ()
   2: (1)
   3: (2)
   5: (3)
   6: (2,1)
   7: (4)
   9: (2,2)
  10: (3,1)
  11: (5)
  13: (6)
  14: (4,1)
  15: (3,2)
  17: (7)
  19: (8)
  20: (3,1,1)
For example, the partition (3,2,2) has Heinz number 45 and its conjugate (3,3,1) has Heinz number 50, and 45 <= 50, so 45 is in the sequence, and 50 is not.
		

Crossrefs

These partitions are counted by A046682.
The strong version is A352487, counted by A000701.
The opposite version is A352488, strong A352490
These are the positions of nonpositive terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A008292 is the triangle of Eulerian numbers (version without zeros).
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352522 counts compositions by weak subdiagonals, rank statistic A352515.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#<=Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) <= A122111(a(n)).
Previous Showing 31-40 of 74 results. Next