cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A088902 Numbers n such that n = product (p_k)^(c_k) and set of its (c_k k's)'s is a self-conjugate partition, where p_k is k-th prime and c_k > 0.

Original entry on oeis.org

1, 2, 6, 9, 20, 30, 56, 75, 84, 125, 176, 210, 264, 350, 416, 441, 624, 660, 735, 1088, 1100, 1386, 1560, 1632, 1715, 2310, 2401, 2432, 2600, 3267, 3276, 3648, 4080, 5390, 5445, 5460, 5888, 6800, 7546, 7722, 8568, 8832, 9120, 12705, 12740, 12870, 13689
Offset: 1

Views

Author

Naohiro Nomoto, Nov 28 2003

Keywords

Comments

The Heinz numbers of the self-conjugate partitions. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] to be Product(p_j-th prime, j=1..r) (a concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 1, 4] we get 2*2*2*7 = 56. It is in the sequence since [1,1,1,4] is self-conjugate. - Emeric Deutsch, Jun 05 2015

Examples

			20 is in the sequence because 20 = 2^2 * 5^1 = (p_1)^2 *(p_3)^1, (two 1's, one 3's) = (1,1,3) is a self-conjugate partition of 5.
From _Gus Wiseman_, Jun 28 2022: (Start)
The terms together with their prime indices begin:
    1: ()
    2: (1)
    6: (2,1)
    9: (2,2)
   20: (3,1,1)
   30: (3,2,1)
   56: (4,1,1,1)
   75: (3,3,2)
   84: (4,2,1,1)
  125: (3,3,3)
  176: (5,1,1,1,1)
  210: (4,3,2,1)
  264: (5,2,1,1,1)
(End)
		

Crossrefs

Fixed points of A122111.
A002110 (primorial numbers) is a subsequence.
After a(1) and a(2), a subsequence of A241913.
These partitions are counted by A000700.
The same count comes from A258116.
The complement is A352486, counted by A330644.
These are the positions of zeros in A352491.
A000041 counts integer partitions, strict A000009.
A325039 counts partitions w/ product = conjugate product, ranked by A325040.
Heinz number (rank) and partition:
- A003963 = product of partition, conjugate A329382.
- A008480 = number of permutations of partition, conjugate A321648.
- A056239 = sum of partition.
- A296150 = parts of partition, reverse A112798, conjugate A321649.
- A352487 = less than conjugate, counted by A000701.
- A352488 = greater than or equal to conjugate, counted by A046682.
- A352489 = less than or equal to conjugate, counted by A046682.
- A352490 = greater than conjugate, counted by A000701.

Programs

  • Maple
    with(numtheory): c := proc (n) local B, C: B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: C := proc (P) local a: a := proc (j) local c, i: c := 0: for i to nops(P) do if j <= P[i] then c := c+1 else end if end do: c end proc: [seq(a(k), k = 1 .. max(P))] end proc: mul(ithprime(C(B(n))[q]), q = 1 .. nops(C(B(n)))) end proc: SC := {}: for i to 14000 do if c(i) = i then SC := `union`(SC, {i}) else end if end do: SC; # Emeric Deutsch, May 09 2015
  • Mathematica
    Select[Range[14000], Function[n, n == If[n == 1, 1, Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@ Length@ l, m = Min@ l}, Length@ Union@ l]] &@ Catenate[ConstantArray[PrimePi@ #1, #2] & @@@ FactorInteger@ n]]]] (* Michael De Vlieger, Aug 27 2016, after JungHwan Min at A122111 *)

Extensions

More terms from David Wasserman, Aug 26 2005

A000701 One half of number of non-self-conjugate partitions; also half of number of asymmetric Ferrers graphs with n nodes.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 37, 49, 66, 86, 113, 146, 190, 242, 310, 392, 497, 623, 782, 973, 1212, 1498, 1851, 2274, 2793, 3411, 4163, 5059, 6142, 7427, 8972, 10801, 12989, 15572, 18646, 22267, 26561, 31602, 37556, 44533, 52743, 62338, 73593
Offset: 0

Views

Author

Keywords

Comments

Also number of cycle types of odd permutations.
Also number of partitions of n with an odd number of even parts. There is no restriction on the odd parts. - N. Sato, Jul 20 2005. E.g., a(6)=5 because we have [6],[4,1,1],[3,2,1],[2,2,2] and [2,1,1,1,1]. - Emeric Deutsch, Mar 02 2006
Also number of partitions of n with largest part not congruent to n modulo 2: a(2*n)=A027193(2*n), a(2*n+1)=A027187(2*n+1); a(n)=A000041(n)-A046682(n). - Reinhard Zumkeller, Apr 22 2006
From Gus Wiseman, Mar 31 2022: (Start)
Also the number of integer partitions of n with Heinz number greater than that of their conjugate, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). These partitions are ranked by A352490. The complement is counted by A046682. For example, the a(n) partitions for n = 2...8 are:
(11) (111) (211) (221) (222) (331) (2222)
(1111) (2111) (2211) (2221) (3221)
(11111) (3111) (3211) (3311)
(21111) (22111) (22211)
(111111) (31111) (32111)
(211111) (41111)
(1111111) (221111)
(311111)
(2111111)
(11111111)
Also the number of integer partitions of n with Heinz number less than that of their conjugate, ranked by A352487. For example, the a(n) partitions for n = 2...8 are:
(2) (3) (4) (5) (6) (7) (8)
(31) (32) (33) (43) (44)
(41) (42) (52) (53)
(51) (61) (62)
(411) (322) (71)
(421) (422)
(511) (431)
(521)
(611)
(5111)
(End)

Examples

			G.f. = x^2 + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 14*x^9 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A000700 counts self-conjugate partitions, ranked by A088902.
A330644 counts non-self-conjugate partitions, ranked by A352486.
Heinz number (rank) and partition:
- A122111 = rank of conjugate.
- A296150 = parts of partition, conjugate A321649.
- A352487 = rank less than conjugate, counted by A000701.
- A352488 = rank greater than or equal to conjugate, counted by A046682.
- A352489 = rank less than or equal to conjugate, counted by A046682.
- A352490 = rank greater than conjugate, counted by A000701.
- A352491 = rank minus conjugate.

Programs

  • Maple
    with(combinat); A000701 := n->(numbpart(n)-A000700(n))/2;
  • Mathematica
    a41 = PartitionsP; a700[n_] := SeriesCoefficient[ Product[1 + x^k, {k, 1, n, 2}], {x, 0, n}]; a[0] = 0; a[n_] := (a41[n] - a700[n])/2; Table[a[n], {n, 0, 48}] (* Jean-François Alcover, Feb 21 2012, after first formula *)
    a[ n_] := SeriesCoefficient[ (1 / QPochhammer[ x] - 1 / QPochhammer[ x, -x]) / 2, {x, 0, n}]; (* Michael Somos, Aug 25 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - EllipticTheta[ 4, 0, x^2]) / (2 QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, Aug 25 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] Sum[ x^(2 k) / QPochhammer[ x^2, x^2, k], {k, 1, n/2, 2}], {x, 0, n}] (* Michael Somos, Aug 25 2015 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (1 / QPochhammer[ x, x, k]^2 - 1 / QPochhammer[ x^2, x^2, k]) x^k^2, {k, Sqrt@n}] / 2, {x, 0, n}]]; (* Michael Somos, Aug 25 2015 *)
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],Times@@Prime/@#>Times@@Prime/@conj[#]&]],{n,0,15}] (* Gus Wiseman, Mar 31 2022 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x^2 + A)^2 / eta(x^4 + A) ) / (2 * eta(x + A)), n))}; /* Michael Somos, Aug 25 2015 */
    
  • PARI
    q='q+O('q^60); concat([0, 0], Vec((1-eta(q^2)^2/eta(q^4))/(2*eta(q)))) \\ Altug Alkan, Sep 26 2018

Formula

a(n) = (A000041(n) - A000700(n))/2.
From Bill Gosper, Aug 08 2005: (Start)
Sum a(n) q^n = q^2 + q^3 + 2 q^4 + 3 q^5 + 5 q^6 + 7 q^7 + ...
= -( Sum_{n>=1} (-q^2)^(n^2) ) / ( Sum_{ n = -oo..oo } (-1)^n q^(n(3n-1)/2) )
= (- q; q){oo} Sum{n>=1} q^(2(2n-1))/(q^2;q^2)_{2n-1}
= (1/(q;q)_oo - 1/(q;-q)_oo)/2
= (1/(q;q)_oo - (-q;q^2)_oo)/2
= Sum{k>=0} ( 1/((q;q)_k)^2 - 1/(q^2;q^2)_k ) q^(k^2)/2
using the "q-Pochhammer" notation (a;q)n := Product{k=0..n-1} (1 - a*q^k).
(End)
a(n) = p(n-2) - p(n-8) + p(n-18) - p(n-32) + ... + (-1)^(k+1)*p(n-2*k^2) + ..., where p() is A000041(). E.g., a(20) = p(18) - p(12) + p(2) = 385 - 77 + 2 = 310. - Vladeta Jovovic, Aug 08 2004
G.f.: (1/2)*(1 - Product_{j>=1} (1-x^(2j))/(1+x^(2j)))/Product_{j>=1} (1 - x^j). - Emeric Deutsch, Mar 02 2006
a(2*n) = A236559(n). a(2*n + 1) = A236914(n). - Michael Somos, Aug 25 2015
a(n) = A330644(n)/2. - Omar E. Pol, Jan 10 2020
a(n) = A000041(n) - A046682(n) = A046682(n) - A000700(n). - Gus Wiseman, Mar 31 2022

Extensions

Better description and more terms from Christian G. Bower, Apr 27 2000

A114088 Triangle read by rows: T(n,k) is number of partitions of n whose tail below its Durfee square has k parts (n >= 1; 0 <= k <= n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 5, 5, 3, 2, 1, 1, 1, 5, 6, 6, 5, 3, 2, 1, 1, 1, 6, 8, 8, 7, 5, 3, 2, 1, 1, 1, 7, 10, 10, 9, 7, 5, 3, 2, 1, 1, 1, 9, 13, 13, 12, 10, 7, 5, 3, 2, 1, 1, 1, 10, 16, 17, 15, 13, 10, 7, 5, 3, 2, 1, 1, 1, 12, 20, 22, 20, 17
Offset: 1

Views

Author

Emeric Deutsch, Feb 12 2006

Keywords

Comments

From Gus Wiseman, May 21 2022: (Start)
Also the number of integer partitions of n with k parts below the diagonal. For example, the partition (3,2,2,1) has two parts (at positions 3 and 4) below the diagonal (1,2,3,4). Row n = 8 counts the following partitions:
8 71 611 5111 41111 311111 2111111 11111111
44 332 2222 22211 221111
53 422 3221 32111
62 431 3311
521 4211
Indices of parts below the diagonal are also called strong nonexcedances.
(End)

Examples

			T(7,2)=3 because we have [5,1,1], [3,2,1,1] and [2,2,2,1] (the bottom tails are [1,1], [1,1] and [2,1], respectively).
Triangle starts:
  1;
  1, 1;
  1, 1, 1;
  2, 1, 1, 1;
  2, 2, 1, 1, 1;
  3, 3, 2, 1, 1, 1;
  3, 4, 3, 2, 1, 1, 1;
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
  • G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).

Crossrefs

Row sums: A000041.
Column k = 0: A003114.
Weak opposite: A115994.
Permutations: A173018, weak A123125.
Ordered: A352521, rank stat A352514, weak A352522.
Opposite ordered: A352524, first col A008930, rank stat A352516.
Weak opposite ordered: A352525, first col A177510, rank stat A352517.
Weak: A353315.
Opposite: A353318.
A000700 counts self-conjugate partitions, ranked by A088902.
A115720 counts partitions by Durfee square, rank stat A257990.
A352490 gives the (strong) nonexcedance set of A122111, counted by A000701.

Programs

  • Maple
    g:=sum(z^(k^2)/product((1-z^j)*(1-t*z^j),j=1..k),k=1..20): gserz:=simplify(series(g,z=0,30)): for n from 1 to 14 do P[n]:=coeff(gserz,z^n) od: for n from 1 to 14 do seq(coeff(t*P[n],t^j),j=1..n) od; # yields sequence in triangular form
  • Mathematica
    subdiags[y_]:=Length[Select[Range[Length[y]],#>y[[#]]&]];
    Table[Length[Select[IntegerPartitions[n],subdiags[#]==k&]],{n,1,15},{k,0,n-1}] (* Gus Wiseman, May 21 2022 *)
  • PARI
    T_qt(max_row) = {my(N=max_row+1, q='q+O('q^N), h = sum(k=1,N, q^(k^2)/prod(j=1,k, (1-q^j)*(1-t*q^j))) ); for(i=1, N-1, print(Vecrev(polcoef(h, i))))}
    T_qt(10) \\ John Tyler Rascoe, Oct 24 2024

Formula

G.f. = Sum_{k>=1} q^(k^2) / Product_{j=1..k} (1 - q^j)*(1 - t*q^j).
Sum_{k=0..n-1} k*T(n,k) = A114089(n).

A046682 Number of cycle types of conjugacy classes of all even permutations of n elements.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 29, 40, 52, 69, 90, 118, 151, 195, 248, 317, 400, 505, 632, 793, 985, 1224, 1512, 1867, 2291, 2811, 3431, 4186, 5084, 6168, 7456, 9005, 10836, 13026, 15613, 18692, 22316, 26613, 31659, 37619, 44601, 52815, 62416, 73680, 86809, 102162
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n with even number of even parts. There is no restriction on the odd parts.
a(n) = u(n) + v(n), n >= 2, of the Osima reference, p. 383.
Also number of partitions of n with largest part congruent to n modulo 2: a(2*n) = A027187(2*n), a(2*n-1) = A027193(2*n-1); a(n) = A000041(n) - A000701(n). - Reinhard Zumkeller, Apr 22 2006
Equivalently, number of partitions of n with number of parts having the same parity as n. - Olivier Gérard, Apr 04 2012
Also number of distinct free Young diagrams (Ferrers graphs with n nodes). Free Young diagrams are distinct when none is a rigid transformation (translation, rotation, reflection or glide reflection) of another. - Jani Melik, May 08 2016
Let the cycle type of an even permutation be represented by the partition A=(O1,O2,...,Oi,E1,E2,...,E2j), where the Os are parts with odd length and the Es are parts with even lengths, and where j may be zero, using Reinhard Zumkeller's observation that the partition associated with a cycle type of an even permutation has an even number of even parts. The set of even cycle types enumerated here can be considered a monoid under a binary operation *: Let A be as above and B=(o1,o2,...,ok,e1,e2,...,e2m). A*B is the partition (O1o1,O1o2,...,O1ok,O1e1,...,O1e2m,O2o1,...,O2e2m,...,Oio1,...,Oie2m,E1o1,...,E1e2m,...,E2je2m). This product has 2im+2jk+4jm even parts, so it represents the cycle type of an even permutation. - Richard Locke Peterson, Aug 20 2018
From Gus Wiseman, Mar 31 2022: (Start)
Also the number of integer partitions of n with Heinz number greater than or equal to that of their conjugate, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). These partitions are ranked by A352488. The complement is counted by A000701. For example, the a(n) partitions for n = 1...7 are:
(1) (11) (21) (22) (221) (222) (331)
(111) (211) (311) (321) (2221)
(1111) (2111) (2211) (3211)
(11111) (3111) (4111)
(21111) (22111)
(111111) (31111)
(211111)
(1111111)
Also the number of integer partitions of n with Heinz number less than or equal to their conjugate, ranked by A352489. For example, the a(n) partitions for n = 1...7 are:
(1) (2) (3) (4) (5) (6) (7)
(21) (22) (32) (33) (43)
(31) (41) (42) (52)
(311) (51) (61)
(321) (322)
(411) (421)
(511)
(4111)
(End)

Examples

			1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 12*x^8 + 16*x^9 + ...
a(3)=2 since cycle types of even permutations of 3 elements is (.)(.)(.), (...).
a(4)=3 since cycle types of even permutations of 4 elements is (.)(.)(.)(.), (...)(.), (..)(..).
a(5)=4 (free Young diagrams):
  XXXXX XXXX. XXX.. XXX..
  ..... X.... XX... X....
  ..... ..... ..... X....
  ..... ..... ..... .....
  ..... ..... ..... .....
		

Crossrefs

For the number of conjugacy classes of the alternating group A_n, n>=2, see A000702.
Cf. A118301.
A000041 counts integer partitions.
A000700 counts self-conjugate partitions, ranked by A088902.
A330644 counts non-self-conjugate partitions, ranked by A352486.
Heinz number (rank) and partition:
- A122111 = rank of conjugate.
- A296150 = parts of partition, conjugate A321649.
- A352487 = rank less than conjugate, counted by A000701.
- A352488 = rank greater than or equal to conjugate, counted by A046682.
- A352489 = rank less than or equal to conjugate, counted by A046682.
- A352490 = rank greater than conjugate, counted by A000701.
- A352491 = rank minus conjugate.

Programs

  • Maple
    seq(add((-1)^(n-k)*combinat:-numbpart(n,k),k=0..n),n=0..48); # Peter Luschny, Aug 03 2015
  • Mathematica
    max = 48; f[q_] := Sum[(-q^2)^n^2, {n, 0, max}]/Product[1-q^n, {n, 1, max}]; CoefficientList[ Series[f[q], {q, 0, max}], q] (* Jean-François Alcover, Oct 18 2011, after g.f. *)
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],Times@@Prime/@#>=Times@@Prime/@conj[#]&]],{n,0,15}] (* Gus Wiseman, Mar 31 2022 *)
  • PARI
    list(lim)=my(q='q);Vec(sum(n=0,sqrt(lim),(-q^2)^(n^2))/prod(n=1,lim,1-q^n)+O(q^(lim\1+1))) \\ Charles R Greathouse IV, Oct 18 2011
    
  • PARI
    {a(n) = if( n<0, 0, (numbpart(n) + polcoeff( 1 / prod( k=1, n, 1 + (-x)^k, 1 + x * O(x^n)), n)) / 2)} /* Michael Somos, Jul 24 2012 */

Formula

G.f.: Sum_{n>=0} (-q^2)^(n^2) / Product_{m>=1} (1-q^m ) = ( 1/Product_{m>=1} (1-q^m) + Product_{m>=1} (1+q^(2*m-1) ) ) / 2. - Mamuka Jibladze, Sep 07 2003
a(n) = (A000041(n) + A000700(n)) / 2.
a(n) = A000041(n) - A000701(n). - Gus Wiseman, Mar 31 2022

A352486 Heinz numbers of non-self-conjugate integer partitions.

Original entry on oeis.org

3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. The sequence lists all Heinz numbers of partitions whose Heinz number is different from that of their conjugate.

Examples

			The terms together with their prime indices begin:
   3: (2)
   4: (1,1)
   5: (3)
   7: (4)
   8: (1,1,1)
  10: (3,1)
  11: (5)
  12: (2,1,1)
  13: (6)
  14: (4,1)
  15: (3,2)
  16: (1,1,1,1)
  17: (7)
  18: (2,2,1)
For example, the self-conjugate partition (4,3,3,1) has Heinz number 350, so 350 is not in the sequence.
		

Crossrefs

The complement is A088902, counted by A000700.
These partitions are counted by A330644.
These are the positions of nonzero terms in A352491.
A000041 counts integer partitions, strict A000009.
A098825 counts permutations by unfixed points.
A238349 counts compositions by fixed points, rank statistic A352512.
A325039 counts partitions w/ same product as conjugate, ranked by A325040.
A352523 counts compositions by unfixed points, rank statistic A352513.
Heinz number (rank) and partition:
- A003963 = product of partition, conjugate A329382
- A008480 = number of permutations of partition, conjugate A321648.
- A056239 = sum of partition
- A122111 = rank of conjugate partition
- A296150 = parts of partition, reverse A112798, conjugate A321649
- A352487 = less than conjugate, counted by A000701
- A352488 = greater than or equal to conjugate, counted by A046682
- A352489 = less than or equal to conjugate, counted by A046682
- A352490 = greater than conjugate, counted by A000701

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y0]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#!=Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) != A122111(a(n)).

A352521 Triangle read by rows where T(n,k) is the number of integer compositions of n with k strong nonexcedances (parts below the diagonal).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 3, 2, 2, 1, 0, 4, 5, 3, 3, 1, 0, 6, 8, 7, 6, 4, 1, 0, 9, 12, 15, 12, 10, 5, 1, 0, 13, 19, 27, 25, 22, 15, 6, 1, 0, 18, 32, 43, 51, 46, 37, 21, 7, 1, 0, 25, 51, 70, 94, 94, 83, 58, 28, 8, 1, 0, 35, 77, 117, 162, 184, 176, 141, 86, 36, 9, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Mar 22 2022

Keywords

Examples

			Triangle begins:
   1
   1   0
   1   1   0
   2   1   1   0
   3   2   2   1   0
   4   5   3   3   1   0
   6   8   7   6   4   1   0
   9  12  15  12  10   5   1   0
  13  19  27  25  22  15   6   1   0
  18  32  43  51  46  37  21   7   1   0
  25  51  70  94  94  83  58  28   8   1   0
For example, row n = 6 counts the following compositions (empty column indicated by dot):
  (6)    (51)   (312)   (1113)   (11112)  (111111)  .
  (15)   (114)  (411)   (1122)   (11121)
  (24)   (132)  (1131)  (2112)   (11211)
  (33)   (141)  (1212)  (2121)   (21111)
  (42)   (213)  (1221)  (3111)
  (123)  (222)  (1311)  (12111)
         (231)  (2211)
         (321)
		

Crossrefs

Row sums are A011782.
The version for partitions is A114088.
Row sums without the last term are A131577.
The version for permutations is A173018.
Column k = 0 is A219282.
The corresponding rank statistic is A352514.
The weak version is A352522, first column A238874, rank statistic A352515.
The opposite version is A352524, first column A008930, rank stat A352516.
The weak opposite version is A352525, first col A177510, rank stat A352517.
A008292 is the triangle of Eulerian numbers (version without zeros).
A238349 counts comps by fixed points, first col A238351, rank stat A352512.
A352490 is the strong nonexcedance set of A122111.
A352523 counts comps by nonfixed points, first A352520, rank stat A352513.

Programs

  • Mathematica
    pa[y_]:=Length[Select[Range[Length[y]],#>y[[#]]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pa[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    T(n)={my(v=vector(n+1, i, i==1), r=v); for(k=1, n, v=vector(#v, j, sum(i=1, j-1, if(k>i,x,1)*v[j-i])); r+=v); vector(#v, i, Vecrev(r[i], i))}
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 19 2023

Extensions

Terms a(66) and beyond from Andrew Howroyd, Jan 19 2023

A352524 Irregular triangle read by rows where T(n,k) is the number of integer compositions of n with k excedances (parts above the diagonal), all zeros removed.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 5, 6, 9, 1, 11, 18, 3, 21, 35, 8, 41, 67, 20, 80, 131, 44, 1, 157, 257, 94, 4, 310, 505, 197, 12, 614, 996, 406, 32, 1218, 1973, 825, 80, 2421, 3915, 1669, 186, 1, 4819, 7781, 3364, 415, 5, 9602, 15486, 6762, 901, 17, 19147, 30855, 13567, 1918, 49
Offset: 0

Views

Author

Gus Wiseman, Mar 22 2022

Keywords

Examples

			Triangle begins:
     1
     1
     1     1
     2     2
     3     5
     6     9     1
    11    18     3
    21    35     8
    41    67    20
    80   131    44     1
   157   257    94     4
   310   505   197    12
   614   996   406    32
For example, row n = 5 counts the following compositions:
  (113)    (5)     (23)
  (122)    (14)
  (1112)   (32)
  (1121)   (41)
  (1211)   (131)
  (11111)  (212)
           (221)
           (311)
           (2111)
		

Crossrefs

The version for permutations is A008292, weak A123125.
Column k = 0 is A008930.
Row sums are A011782.
The opposite version for partitions is A114088.
The weak version for partitions is A115994.
Column k = 1 is A351983.
The corresponding rank statistic is A352516.
The opposite version is A352521, first col A219282, rank statistic A352514.
The weak opposite version is A352522, first col A238874, rank stat A352515.
The weak version is A352525, first col (k = 1) A177510, rank stat A352517.
A238349 counts comps by fixed points, first col A238351, rank stat A352512.
A352487 lists the excedance set of A122111, opposite A352490.
A352523 counts comps by unfixed points, first A352520, rank stat A352513.

Programs

  • Mathematica
    pd[y_]:=Length[Select[Range[Length[y]],#
    				
  • PARI
    S(v,u)={vector(#v, k, sum(i=1, k-1, v[k-i]*u[i]))}
    T(n)={my(v=vector(1+n), s); v[1]=1; s=v; for(i=1, n, v=S(v, vector(n, j, if(j>i,'x,1))); s+=v); [Vecrev(p) | p<-s]}
    { my(A=T(12)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 02 2023

A352491 n minus the Heinz number of the conjugate of the integer partition with Heinz number n.

Original entry on oeis.org

0, 0, -1, 1, -3, 0, -9, 3, 0, -2, -21, 2, -51, -10, -3, 9, -111, 3, -237, 0, -15, -26, -489, 10, -2, -70, 2, -12, -995, 0, -2017, 21, -39, -158, -19, 15, -4059, -346, -105, 12, -8151, -18, -16341, -36, -5, -722, -32721, 26, -32, 5, -237, -108, -65483, 19, -53
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Problem: What is the image? In the nonnegative case it appears to start: 0, 1, 2, 3, 5, 7, 9, ...

Examples

			The partition (4,4,1,1) has Heinz number 196 and its conjugate (4,2,2,2) has Heinz number 189, so a(196) = 196 - 189 = 7.
		

Crossrefs

Positions of zeros are A088902, counted by A000700.
A similar sequence is A175508.
Positions of nonzero terms are A352486, counted by A330644.
Positions of negative terms are A352487, counted by A000701.
Positions of nonnegative terms are A352488, counted by A046682.
Positions of nonpositive terms are A352489, counted by A046682.
Positions of positive terms are A352490, counted by A000701.
A000041 counts integer partitions, strict A000009.
A003963 is product of prime indices, conjugate A329382.
A008480 counts permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 is partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A238744 is partition conjugate of prime signature, ranked by A238745.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[n-Times@@Prime/@conj[primeMS[n]],{n,30}]

Formula

a(n) = n - A122111(n).

A352514 Number of strong nonexcedances (parts below the diagonal) of the n-th composition in standard order.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 1, 2, 1, 3, 3, 4, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 1, 2, 1, 3, 3, 4, 0, 1, 1, 2, 0, 2, 2, 3, 1, 2, 3, 4, 3, 4, 4, 5, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 1, 2, 1, 3, 3, 4, 0, 1, 1, 2, 0, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Mar 22 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. See also A000120, A059893, A070939, A114994, A225620.

Examples

			The 83rd composition in standard order is (2,3,1,1), with strong nonexcedances {3,4}, so a(83) = 2.
		

Crossrefs

Positions of first appearances are A000225.
The weak version is A352515, counted by A352522 (first column A238874).
The opposite version is A352516, counted by A352524 (first column A008930).
The weak opposite version is A352517, counted by A352525 (first A177510).
The triangle A352521 counts these compositions (first column A219282).
A008292 is the triangle of Eulerian numbers (version without zeros).
A011782 counts compositions.
A173018 counts permutations by number of excedances, weak A123125.
A238349 counts comps by fixed parts, first col A238351, rank stat A352512.
A352490 is the (strong) nonexcedance set of A122111.
A352523 counts comps by unfixed parts, first col A010054, rank stat A352513.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    pa[y_]:=Length[Select[Range[Length[y]],#>y[[#]]&]];
    Table[pa[stc[n]],{n,0,30}]

A352487 Excedance set of A122111. Numbers k < A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is less than that of their conjugate.

Examples

			The terms together with their prime indices begin:
   3: (2)
   5: (3)
   7: (4)
  10: (3,1)
  11: (5)
  13: (6)
  14: (4,1)
  15: (3,2)
  17: (7)
  19: (8)
  21: (4,2)
  22: (5,1)
  23: (9)
  25: (3,3)
  26: (6,1)
  28: (4,1,1)
For example, the partition (4,1,1) has Heinz number 28 and its conjugate (3,1,1,1) has Heinz number 40, and 28 < 40, so 28 is in the sequence, and 40 is not.
		

Crossrefs

These partitions are counted by A000701.
The weak version is A352489, counted by A046682.
The opposite version is A352490, weak A352488.
These are the positions of negative terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A008292 is the triangle of Eulerian numbers (version without zeros).
A008480 counts permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A238744 = partition conjugate of prime signature, ranked by A238745.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352521 counts compositions by subdiagonals, rank statistic A352514.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#
    				

Formula

a(n) < A122111(a(n)).
Showing 1-10 of 15 results. Next